Half-smooth tongue sole (Cynoglossus semilaevis) is an important cultured marine fish as well as a promising model fish for the study of sex determination mechanisms. In the present study, a protocol for artificial gynogenesis of half-smooth tongue sole was developed in order to identify the sex determination mechanism and to generate all-female stock. The optimal UV-irradiation dose for genetically inactivating sea perch spermatozoa was determined to be > or =30 mJ/cm(2). The optimal initiation time for cold shock of gynogenetic embryos was determined to be 5 min after fertilization, while the optimal temperature and treatment duration were determined to be 20-25 min at 5 degrees C. Chromosomes from common diploids, gynogenetic haploids, and diploids were analyzed. WW chromosomes were discovered in some of the gynogenetic diploids. The microsatellite marker was applied to analyze gynogenetic diploid fry. Among the 30 gynogenetic diploid fry, 11 fry contained only one allele, while 19 contained two alleles, which had the same genotype as their mother. The female-specific DNA marker was observed in four individuals out of ten gynogenetic diploid fry. Ploidy analysis of 20 putative gynogenetic fry showed them all to be diploid. Thus, a protocol for the induction of artificial gynogenesis has been developed for the first time in half smooth tongue sole, and the sex determination mechanism in the tongue sole was determined to be female heterogametic with the ZW chromosome.
Quantitative real time RT-PCR has been described as the most sensitive method for the detection of low abundance mRNA. To date, no reference genes have been screened in the half-smooth tongue sole (Cynoglossus semilaevis). The aim of this study was to select the most stable genes for quantitative real-time RT-PCR. Eight housekeeping genes (18S, TUBA, B2M, ACTB, EF1A, GAPDH, RPL17 and UBCE) were tested at different developmental stages, in different tissues, and following exposure to the drug SB-431542. Using geNorm, BestKeeper and NormFinder software, GAPDH/B2M, GAPDH/18S and UBCE/GAPDH were identified as the most suitable genes from samples taken of different developmental stages while 18S/RPL17 were consistently ranked as the best reference genes for different tissue types. Furthermore, TUBA/B2M, TUBA/UBCE and B2M/TUBA were found to be the most suitable genes in samples treated with the drug, SB-431542 by geNorm, BestKeeper and NormFinder respectively. Across both different developmental stages and tissue types, the combination of 18S and GAPDH was the most stable reference gene analyzed by Ref-Finder. To test and verify the screened reference genes, the expression profiles of LEFTY-normalized to the combination of GAPDH/18S and ACTB were presented. These results will be useful for future gene-expression studies in the half-smooth tongue sole.
The giant grouper (Epinephelus lanceolatus) is the largest coral reef teleost, with a native range that spans temperate and tropical waters in the Pacific and the Indian Oceans. It is cultured artificially and used as a breeding species in aquaculture due to its rapid growth rate. Here we report a giant grouper genome assembled at the chromosome scale from sequences generated using Illumina and high‐throughput chromatin conformation capture (Hi‐C) technology. The assembly comprised 1.086 Gb, with 98.4% of the scaffold sequences anchored into 24 chromosomes. The contig and scaffold N50 values were 119.9 kb and 46.2 Mb, respectively. The assembly is of high integrity, including 96.4% universal single‐copy orthologues based on BUSCO analysis. Through chromosome‐scale evolution analysis, we identified alignments of six giant grouper chromosomes to three stickleback chromosomes and some of the genes located within the breakpoints of reshuffling events may related to development and growth. From the 24,718 protein‐coding genes, we found that several gene families related to innate immunity and glycan biosynthesis were significantly expanded in the giant grouper genome compared to other teleost genomes. In addition, we identified several genes related to the hormone signalling pathway and innate immunity that have experienced positive selection or accelerated evolution, implicating their roles in immune defence and fast growth of the species. The high‐quality genome assembly will provide a valuable genomic resource for further biological and evolutionary studies, and useful genomic tools for breeding of the giant grouper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.