Background The terrifying undiagnosed rate and high prevalence of diabetes have become a public emergency. A high efficiency and cost-effective early recognition method is urgently needed. We aimed to generate innovative, user-friendly nomograms that can be applied for diabetes screening in different ethnic groups in China using the non-lab or noninvasive semi-lab data. Methods This multicenter, multi-ethnic, population-based, cross-sectional study was conducted in eight sites in China by enrolling subjects aged 20–70. Sociodemographic and anthropometric characteristics were collected. Blood and urine samples were obtained 2 h following a standard 75 g glucose solution. In the final analysis, 10,794 participants were included and randomized into model development (n = 8096) and model validation (n = 2698) group with a ratio of 3:1. Nomograms were developed by the stepwise binary logistic regression. The nomograms were validated internally by a bootstrap sampling method in the model development set and externally in the model validation set. The area under the receiver operating characteristic curve (AUC) was used to assess the screening performance of the nomograms. Decision curve analysis was applied to calculate the net benefit of the screening model. Results The overall prevalence of undiagnosed diabetes was 9.8% (1059/10794) according to ADA criteria. The non-lab model revealed that gender, age, body mass index, waist circumference, hypertension, ethnicities, vegetable daily consumption and family history of diabetes were independent risk factors for diabetes. By adding 2 h post meal glycosuria qualitative to the non-lab model, the semi-lab model showed an improved Akaike information criterion (AIC: 4506 to 3580). The AUC of the semi-lab model was statistically larger than the non-lab model (0.868 vs 0.763, P < 0.001). The optimal cutoff probability in semi-lab and non-lab nomograms were 0.088 and 0.098, respectively. The sensitivity and specificity were 76.3% and 81.6%, respectively in semi-lab nomogram, and 72.1% and 67.3% in non-lab nomogram at the optimal cut off point. The decision curve analysis also revealed a bigger decrease of avoidable OGTT test (52 per 100 subjects) in the semi-lab model compared to the non-lab model (36 per 100 subjects) and the existed New Chinese Diabetes Risk Score (NCDRS, 35 per 100 subjects). Conclusion The non-lab and semi-lab nomograms appear to be reliable tools for diabetes screening, especially in developing countries. However, the semi-lab model outperformed the non-lab model and NCDRS prediction systems and might be worth being adopted as decision support in diabetes screening in China.
Quantitative real time RT-PCR has been described as the most sensitive method for the detection of low abundance mRNA. To date, no reference genes have been screened in the half-smooth tongue sole (Cynoglossus semilaevis). The aim of this study was to select the most stable genes for quantitative real-time RT-PCR. Eight housekeeping genes (18S, TUBA, B2M, ACTB, EF1A, GAPDH, RPL17 and UBCE) were tested at different developmental stages, in different tissues, and following exposure to the drug SB-431542. Using geNorm, BestKeeper and NormFinder software, GAPDH/B2M, GAPDH/18S and UBCE/GAPDH were identified as the most suitable genes from samples taken of different developmental stages while 18S/RPL17 were consistently ranked as the best reference genes for different tissue types. Furthermore, TUBA/B2M, TUBA/UBCE and B2M/TUBA were found to be the most suitable genes in samples treated with the drug, SB-431542 by geNorm, BestKeeper and NormFinder respectively. Across both different developmental stages and tissue types, the combination of 18S and GAPDH was the most stable reference gene analyzed by Ref-Finder. To test and verify the screened reference genes, the expression profiles of LEFTY-normalized to the combination of GAPDH/18S and ACTB were presented. These results will be useful for future gene-expression studies in the half-smooth tongue sole.
Lycium barbarum (L. barbarum) fruit or extract has been regarded as a superior-grade Chinese medicine, used to modulate body immunity and for anti-aging purposes. However, the underlying molecular mechanisms behind these effects remain unclear. In the present study, L. barbarum polysaccharides (LBPs), considered a major contributor of L. barbarum effects, were used to elucidate its mechanism of action by phenotypic and senescence associated-β-galactosidase (SA-β-gal) assays, evaluation of survival rates in vivo and expression profiling of genes related to the p53 signaling pathway in a zebrafish model. Zebrafish embryos were continuously exposed to various concentrations of LBPs (1.0, 2.0, 3.0 and 4.0 mg/ml) for 3 days. The results of fluorescent acridine orange and SA-β-gal staining indicated that cell apoptosis and senescence mainly occur in the head at 24 hours post fertilization (hpf) and 72 hpf. In addition, resistance to replicative senescence was observed at low doses of LBPs, especially at the 3.0 mg/ml concentration. Furthermore, the expression of genes that relate to aging, such as p53, p21 and Bax, was decreased, while that of Mdm2 and TERT genes was increased after treatment with LBPs. The results demonstrated that the effects of LBPs on cell apoptosis and aging might be mediated by the p53-mediated pathway.
Dragon's blood is a bright red resin obtained from Dracaena cochinchinensis. It is a traditional medicinal that is used for wound healing and to stop bleeding. Its main biological activity appears to be from phenolic compounds found in Dragon's blood. In this study, the radioprotective effects of Dragon's blood were examined after whole brain irradiation of rats with either 100 MeV/u Carbon (12)C(6+) heavy ions or (60)Co γ-rays. The amounts of radiation-induced oxidative stress, inflammatory cytokines and apoptosis in irradiated rat brains were compared with and without Dragon's blood treatment. Compared to the "irradiation only" control group, the Dragon's blood treatment group significantly decreased malondialdehyde and hydrogen peroxide levels, and increased superoxide dismutase activity and glutathione levels induced by oxidative stress in radiation exposed rats (P < 0.05). Dragon's blood also significantly reduced radiation-induced inflammatory cytokines of tumor necrosis factor-α, interferon-γ and interleukin-6 levels (P < 0.05) and inhibited hippocampal neuronal apoptosis in (60)Co γ-ray irradiated rats. Furthermore, Dragon's blood significantly increased expression of brain-derived neurophic factor and inhibited the expression of pro-apoptotic caspase 3 (P < 0.05-0.01). Finally, Dragon's blood significantly inhibited expression of the AP-1 transcription factor family members c-fos and c-jun proteins (P < 0.05-0.01). The results obtained here suggest that Dragon's blood has radioprotective properties in rat brains after both heavy ions and (60)Co γ-ray exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.