Background: Coronavirus disease 2019 (COVID-19) has been a global pandemic disease, with more than 4 million cases and nearly 300,000 deaths. Little is known about COVID-19 in patients with chronic obstructive pulmonary disease (COPD). We aimed to evaluate the influence of preexisting COPD on the progress and outcomes of COVID-19. Methods: This was a multicenter, retrospective, observational study. We enrolled 1,048 patients aged 40 years and above, including 50 patients with COPD and 998 patients without COPD, and with COVID-19 confirmed via high-throughput sequencing or real-time reverse transcription-polymerase chain reaction, between December 11, 2019 and February 20, 2020. We collected data of demographics, pathologic test results, radiologic imaging, and treatments. The primary outcomes were composite endpoints determined by admission to an intensive care unit, the use of mechanical ventilation, or death. Results: Compared with patients who had COVID-19 but not COPD, those with COPD had higher rates 1812 Wu et al.
Background: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease and its clinically relevant subtypes are not well understood. Which clinical characteristics are more likely to be present among individuals who develop COPD remains to be studied in depth. Therefore, we designed a prospective observational cohort study, entitled the Early Chronic Obstructive Pulmonary Disease (ECOPD) study, to fill this evidence gap. The ECOPD study has four specific aims: (I) identification of characteristics, parameters, and biomarkers that may predict the development of airflow obstruction and annual decline in lung function with normal spirometry; (II) identification of clinically relevant early COPD subtypes; (III) identification of characteristics, parameters, and biomarkers that may predict disease progression in these early COPD subtypes; (IV) development and validation of machine learning models to predict development of airflow obstruction and disease progression.Methods: We will recruit approximately 2,000 participants aged 40-80 years, including approximately 1,000 with COPD [post-bronchodilator forced expiratory volume in 1 second (FEV1)/forced vital capacity (FVC) <0.7] and approximately 1,000 without COPD, using a population-based survey for COPD. We will assess all participants using standard respiratory epidemiological questionnaires, pulmonary function tests [pre-bronchodilator and post-bronchodilator spirometry, and impulse oscillometry (IOS)], health outcomes [modified British Medical Research Council (mMRC) dyspnea scale, COPD assessment test (CAT), COPD clinical questionnaire (CCQ)], inspiratory and expiratory chest computed tomography (CT), and biomarker measurements (blood and urine), as well as satellite remote sensing pollutant exposure measures. Subgroup will additionally complete induced sputum, exercise capacity tests [6-minute walk test (6MWT) and cardiopulmonary exercise testing (CPET)] and home monitoring/personal sampling as pollutant exposure measures. Study procedures will be performed at baseline and every 1 year thereafter. Discussion: The ECOPD study will provide insight into many aspects of early COPD and improve our understanding of COPD development, which may facilitate therapeutic interventions with the potential to ^ ORCID: 0000-0001-6651-634X.
Background: Prior pulmonary tuberculosis (TB) can cause permanent changes in lung anatomy and is associated with lung function loss. However, it remains unclear whether pulmonary function impairment owing to TB is associated with airflow obstruction, the hallmark of chronic obstructive pulmonary disease (COPD). The aim of this systematic review and meta-analysis was to assess the association and quantify the magnitudes of association between pulmonary TB and COPD, and to evaluate the prevalence of COPD in patients with prior pulmonary TB.Methods: We searched the PubMed, Embase, and Web of Science databases for studies published from inception to January 1, 2020. Pooled effect sizes were calculated according to a random effects model or fixed effect model depending on heterogeneity. Specific subgroups (different diagnostic criteria, smoking status, income level) were examined.Results: A total of 23 articles were included in this study. Compared with controls, patients with pulmonary TB had an odds ratios (ORs) of 2.59 [95% confidence interval (CI): 2.12-3.15; P<0.001] for developing COPD. In jackknife sensitivity analyses, the increased risk of prior pulmonary TB remained consistent for COPD; when the meta-analysis was repeated and one study was omitted each time, the ORs and corresponding 95% CIs were greater than 2. Funnel plots of ORs with Egger's linear regression (t=2.00, P=0.058) and Begg's rank correlation (Z=0.75, P=0.455) showing no significant publication bias. Subgroup analysis showed that the same conclusion was still present in never smokers (ORs 2.41; 95% CI: 1.74-3.32; P<0.001), patients with pulmonary TB diagnosed using chest X-ray (ORs 2.47; 95% CI: 1.23-4.97; P<0.001), and low-and middle-income country (LMIC) settings (ORs 2.70; 95% CI: 2.08-3.51; P<0.001). The pooled prevalence of COPD in patients with prior pulmonary TB was 21% (95% CI: 16-25%; P<0.001).Conclusions: Individuals with prior pulmonary TB have an increased risk and high prevalence of COPD.Future studies identifying the underlying mechanisms for TB-associated COPD and therapeutic strategies are required.
Background and objective: Spirometry is commonly used to assess small airway dysfunction (SAD). Impulse oscillometry (IOS) can complement spirometry. However, discordant spirometry and IOS in the diagnosis of SAD were not uncommon. We examined the association between spirometry and IOS within a large cohort of subjects to identify variables that may explain discordant spirometry and IOS findings.Methods: 1,836 subjects from the ECOPD cohort underwent questionnaires, symptom scores, spirometry, and IOS, and 1,318 subjects were examined by CT. We assessed SAD with R5-R20 > the upper limit of normal (ULN) by IOS and two of the three spirometry indexes (maximal mid-expiratory flow (MMEF), forced expiratory flow (FEF)50%, and FEF75%) < 65% predicted. Multivariate regression analysis was used to analyze factors associated with SAD diagnosed by only spirometry but not IOS (spirometry-only SAD) and only IOS but not spirometry (IOS-only SAD), and line regression was used to assess CT imaging differences.Results: There was a slight agreement between spirometry and IOS in the diagnosis of SAD (kappa 0.322, p < 0.001). Smoking status, phlegm, drug treatment, and family history of respiratory disease were factors leading to spirometry-only SAD. Spirometry-only SAD had more severe emphysema and gas-trapping than IOS-only SAD in abnormal lung function. However, in normal lung function subjects, there was no statistical difference in emphysema and gas-trapping between discordant groups. The number of IOS-only SAD was nearly twice than that of spirometry.Conclusion: IOS may be more sensitive than spirometry in the diagnosis of SAD in normal lung function subjects. But in patients with abnormal lung function, spirometry may be more sensitive than IOS to detect SAD patients with clinical symptoms and CT lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.