Text classification is a common application in natural language processing. We proposed a multi-label text classification model based on ELMo and attention mechanism which help solve the problem for the sentiment classification task that there is no grammar or writing convention in power supply related text and the sentiment related information disperses in the text. Firstly, we use pre-trained word embedding vector to extract the feature of text from the Internet. Secondly, the analyzed deep information features are weighted according to the attention mechanism. Finally, an improved ELMo model in which we replace the LSTM module with GRU module is used to characterize the text and information is classified. The experimental results on Kaggle's toxic comment classification data set show that the accuracy of sentiment classification is as high as 98%.
With the rapid development of network technology, the electric power Internet of Things needs to face a large number of electronic texts and a large number of distributed data access and analysis requirements. If the system wants to complete accurate and efficient data analysis and build an existing data and service standard system covering the entire chain of energy and power business on the existing basis, it must implement massive electronic text retrieval, information extraction and classification in the power grid system. In order to achieve this purpose, a DNN neural network classification model is constructed to classify the text information of the power grid, and the effectiveness of the method is verified by experiments based on data from the substation information system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.