Fibrosis usually results from dysregulated wound repair and is characterized by excessive scar tissue. It is a complex process with unclear mechanisms. Accumulating evidence indicates that epigenetic alterations, including histone acetylation, play a pivotal role in this process. Histone acetylation is governed by histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDACs are enzymes that remove the acetyl groups from both histone and nonhistone proteins. Aberrant HDAC activities are observed in fibrotic diseases, including cardiac and pulmonary fibrosis. HDAC inhibitors (HDACIs) are molecules that block HDAC functions. HDACIs have been studied extensively in a variety of tumors. Currently, there are four HDACIs approved by the US Food and Drug Administration for cancer treatment yet none for fibrotic diseases. Emerging evidence from in vitro and in vivo preclinical studies has presented beneficial effects of HDACIs in preventing or reversing fibrogenesis. In this review, we summarize the latest findings of the roles of HDACs in the pathogenesis of cardiac and pulmonary fibrosis and highlight the potential applications of HDACIs in these two fibrotic diseases.
BackgroundIncreasing evidence supports that gut microbiota plays an important role in the development of cardiovascular diseases. The prevalence of sarcopenia is increasing in patients with heart failure. Muscle wasting is an independent predictor of death in heart failure patients.AimsIn this study, we aimed to explore the characteristics of gut microbiota and metabolites in heart failure patients with or without sarcopenia.MethodsFecal samples of 33 heart failure patients without sarcopenia, 29 heart failure patients with sarcopenia, and 15 controls were collected. The intestinal microbiota was analyzed using 16S rRNA sequencing and the metabolites were detected using the gas chromatography-mass spectrometry method.ResultsThere were significant differences in the overall microbial community structure and diversity between control and heart failure patients with or without sarcopenia. However, no clear clustering of samples was observed in heart failure with and without sarcopenia patients. Several bacterial, particularly Nocardiaceae, Pseudonocardiaceae, Alphaproteobacteria, and Slackia were significantly enriched in the heart failure patients without sarcopenia, while Synergistetes was more abundant in the heart failure patients with sarcopenia. Isobutyric acid, isovaleric acid, and valeric acid were lower in heart failure patients with sarcopenia than that without sarcopenia but lacked significance.ConclusionsThis study demonstrates that there are differences in the gut microbiota between control individuals and heart failure patients with or without sarcopenia. Modulating the gut microbiota may be a new target for the prevention and treatment of sarcopenia in heart failure patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.