Naringin is a dihydrotestosterone flavonoid compound that significantly inhibits bone loss, improves bone density, and enhances biomechanical anti‑compression performance. Previous studies have demonstrated that naringin improves the activity levels of osteocalcin (OC) and alkaline phosphatase (ALP) in MC3T3‑E1 osteoblast precursor cells. The present study investigated the effects of naringin on osteoblastic differentiation and inhibition of adipocyte formation in bone marrow stem cells (BMSCs). The levels of osteogenesis were modulated via upregulation of the expression levels of microRNA (miR)‑20a, and downregulation of the expression levels of peroxisome proliferator‑activated receptor γ (PPARγ). The results indicated that naringin significantly enhanced BMSC proliferation in a dose‑dependent manner. In addition, naringin significantly increased the mRNA expression levels of OC, ALP, and collagen type I. Furthermore, naringin decreased the protein expression levels of PPARγ, and increased the expression levels of miR‑20a in the BMSCs. These results suggested that miR‑20a may regulate the expression of PPARγ in BMSCs. To our knowledge, this is the first study to report naringin‑induced osteogenesis via upregulation of the expression levels of miR‑20a, and downregulation of the expression levels of PPARγ. These results indicated the important role of naringin in BMSC differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.