Naringin is a dihydrotestosterone flavonoid compound that significantly inhibits bone loss, improves bone density, and enhances biomechanical anti‑compression performance. Previous studies have demonstrated that naringin improves the activity levels of osteocalcin (OC) and alkaline phosphatase (ALP) in MC3T3‑E1 osteoblast precursor cells. The present study investigated the effects of naringin on osteoblastic differentiation and inhibition of adipocyte formation in bone marrow stem cells (BMSCs). The levels of osteogenesis were modulated via upregulation of the expression levels of microRNA (miR)‑20a, and downregulation of the expression levels of peroxisome proliferator‑activated receptor γ (PPARγ). The results indicated that naringin significantly enhanced BMSC proliferation in a dose‑dependent manner. In addition, naringin significantly increased the mRNA expression levels of OC, ALP, and collagen type I. Furthermore, naringin decreased the protein expression levels of PPARγ, and increased the expression levels of miR‑20a in the BMSCs. These results suggested that miR‑20a may regulate the expression of PPARγ in BMSCs. To our knowledge, this is the first study to report naringin‑induced osteogenesis via upregulation of the expression levels of miR‑20a, and downregulation of the expression levels of PPARγ. These results indicated the important role of naringin in BMSC differentiation.
Abstract. An integrated microfluidic device was utilized in the present study to investigate the morphology and proliferation of rabbit articular chondrocytes embedded in Matrigel in the presence of insulin-like growth factor 1 (IGF-1) and/or basic fibroblast growth factor (bFGF). The microfluidic device was composed of two parallel channels and a central perfusion-based three-dimensional cell culture module. The rabbit chondrocytes were cultured for 2 weeks at series of concentration gradients of IGF-1 and/or bFGF, which were generated through a diffusion process. At the end of the experiment, the morphology and quantity of cells were measured. Since high expression of collagen II is essential to the function of hyaline cartilage, immunofluorescent images of collagen II expression prior to and after the experiments were gathered for each group. The mean fluorescence intensity ratio (MIR) of collagen II in each group was calculated. The MIRs of collagen II in chondrocytes treated with IGF-1 ranged from 0.6-0.81, those in the cells treated with bFGF ranged from 0.47-0.52, and those in cells treated with a combination of IGF-1 and bFGF ranged from 0.63-0.83. Chondrocyte aggregations were observed in the group treated with 75-100 ng/ml IGF-1 (3.46-fold proliferation ratio). Similarly, a 3.83-fold proliferation ratio was identified in chondrocytes treated with 2.5-5.0 ng/ml bFGF. The group treated with 50-75 ng/ml IGF-1 and 2.5-5.0 ng/ml bFGF exhibited the optimum increase in proliferation (4.83-fold proliferation ratio). The microfluidic device used in the present study can be easily adapted to investigate other growth factors at any concentration gradient. In addition, parallel experiments can be performed simultaneously with a small quantity of cells, making it an attractive platform for the high-throughput screening of cell culture parameters. This platform will aid in the optimization of culture conditions for the in vitro expansion of chondrocytes while maintaining their in vivo morphology, which will improve autologous chondrocyte implantation capabilities for the treatment of cartilage injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.