The cloud computing platforms are being deployed nowadays for resource scheduling of real time data intensive applications. Cloud computing still deals with the challenge of time oriented effective scheduling for resource allocation, while striving to provide the efficient quality of service. This article proposes a time prioritization-based ensemble resource management and Ant Colony based optimization (ERM-ACO) algorithm in order to aid effective resource allocation and scheduling mechanism which specifically deals with the task group feasibility, assessing and selecting the computing and the storage resources required to perform specific tasks. The research outcomes are obtained in terms of time-effective demand fulfillment rate, average response time as well as resource utilization time considering various grouping mechanisms based on data arrival intensity consideration. The proposed framework when compared to the present state-of-the-art methods, optimal fitness percentage of 98% is observed signifying the feasible outcomes for real-time scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.