Aberrant DNA methylation plays a crucial role in cancer development; however, prospective evidence of an interaction between molecular biomarkers and cancer staging for predicting the prognosis of colorectal cancer (CRC) is still limited. We examined DNA methylation in tumors and adjacent normal tissues from patients who underwent CRC surgical resection, and evaluated the interaction between cancer staging (advanced vs local) and DNA methylation to predict the prognosis of CRC. We recruited 132 patients with CRC from Tri-Service General Hospital in Taiwan and used the candidate gene approach to select 3 tumor suppressor genes involved in carcinogenesis pathways. ORs and 95% CIs were computed using logistic regression analyses while adjusting for potential covariates. Advanced cancer stage was correlated with cancer recurrence (OR 7.22, 95% CI 2.82 to 18.45; p<0.001). In addition, after stratification by promoter methylation in 3 combined genes in the matched normal tissues, we observed a joint effect after adjusting for sex, age at surgery, and adjuvant chemotherapy, yielding a significant OR of 20.35 (95% CI 4.16 to 99.57; p<0.001). DNA methylation status would significantly increase the recurrence risk of CRC with a significant impact on joint effect between DNA methylation and clinical stage, particularly in matched normal tissues. This was attributed to molecular changes that could not be examined on the basis of clinical pathology. Our interaction results may serve as a reference marker for evaluating the risk of recurrence in future studies.
A new noninvasive screening tool for colorectal neoplasia detects epigenetic alterations exhibited by gastrointestinal tumor cells shed into stool. There is insufficient existing data to determine temporal associations between colorectal cancer (CRC) progression and aberrant DNA methylation. To evaluate the feasibility of using fecal DNA methylation status to determine CRC progression, we collected stool samples from 14 male SD rats aged six weeks, and administered subcutaneous injections of either 1,2-dimethylhydrazine or saline weekly. p16 DNA methylation statuses in tumorous and normal colon tissue, and from stool samples were determined using methylation-specific PCR. Additionally, p16 methylation was detected in stool DNA from 85.7% of the CRC rats. The earliest change in p16 methylation status in the DMH-treated group stool samples occurred during week nine; repeatabilities were 57.1% in week 19 (p = 0.070) and 85.7% in week 34 (p = 0.005). A temporal correlation was evidenced between progression of CRC and p16 methylation status, as evidenced by DMH-induced rat feces. Using fecal DNA methylation status to determine colorectal tissue methylation status can reveal CRC progression. Our data suggests that p16 promoter methylation is a feasible epigenetic marker for the detection and may be useful for CRC screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.