The SARS-CoV load is a determinant of clinical outcomes of SARS, and it is associated with polymorphisms of genes involved in innate immunity, which might be regulated in an age- and sex-dependent manner. The findings of the present study provided leads to genes involved in the host response to SARS-CoV infection; if substantiated with functional studies, these findings may be applicable to other newly emerged respiratory viruses (e.g., the influenza pandemic strain).
A laboratory-based surveillance network of 11 clinical virological laboratories for influenza viruses was established in Taiwan under the coordination of the Center for Disease Control and Prevention (CDC), Taiwan. From October 2000 to March 2004, 3,244 influenza viruses were isolated, including 1,969 influenza A and 1,275 influenza B viruses. The influenza infections usually occurred frequently in winter in the northern hemisphere. However, the influenza seasonality in Taiwan was not clear during the four seasons under investigation. For example, the influenza A viruses peaked during the winters of 2001, 2002, and 2003. However, some isolated peaks were also found in the summer and fall (June to November) of 2001 and 2002. An unusual peak of influenza B also occurred in the summer of 2002 (June to August). Phylogenetic analysis shows that influenza A isolates from the same year were often grouped together. However, influenza B isolates from the year 2002 clustered into different groups, and the data indicate that both B/Victoria/2/87-like and B/Yamagata/16/88-like lineages of influenza B viruses were cocirculating. Sequence comparison of epidemic strains versus vaccine strains shows that many vaccine-like Taiwanese strains were circulating at least 2 years before the vaccine strains were introduced. No clear seasonality of influenza reports in Taiwan occurred in contrast to other more continental regions
Severe acute respiratory syndrome (SARS), a new disease with symptoms similar to those of atypical pneumonia, raised a global alert in March 2003. Because of its relatively high transmissibility and mortality upon infection, probable SARS patients were quarantined and treated with special and intensive care. Therefore, instant and accurate laboratory confirmation of SARS-associated coronavirus (SARS-CoV) infection has become a worldwide interest. For this need, we purified recombinant proteins including the nucleocapsid (N), envelope (E), membrane (M), and truncated forms of the spike protein (S1-S7) of SARS-CoV in Escherichia coli. The six proteins N, E, M, S2, S5, and S6 were used for Western blotting (WB) to detect various immunoglobulin classes in 90 serum samples from 54 probable SARS patients. The results indicated that N was recognized in most of the sera. In some cases, S6 could be recognized as early as 2 or 3 days after illness onset, while S5 was recognized at a later stage. Furthermore, the result of recombinant-protein-based WB showed a 90% agreement with that of the whole-virus-based immunofluorescence assay. Combining WB with existing RT-PCR, the laboratory confirmation for SARS-CoV infection was greatly enhanced by 24.1%, from 48.1% (RT-PCR alone) to 72.2%. Finally, our results show that IgA antibodies against SARS-CoV can be detected within 1 week after illness onset in a few SARS patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.