Homologous recombination is a key in contributing to bacteriophages genome repair, circularization and replication. No less than six kinds of recombinase genes have been reported so far in bacteriophage genomes, two (UvsX and Gp2.5) from virulent, and four (Sak, Redβ, Erf and Sak4) from temperate phages. Using profile–profile comparisons, structure-based modelling and gene-context analyses, we provide new views on the global landscape of recombinases in 465 bacteriophages. We show that Sak, Redβ and Erf belong to a common large superfamily adopting a shortcut Rad52-like fold. Remote homologs of Sak4 are predicted to adopt a shortcut Rad51/RecA fold and are discovered widespread among phage genomes. Unexpectedly, within temperate phages, gene-context analyses also pinpointed the presence of distant Gp2.5 homologs, believed to be restricted to virulent phages. All in all, three major superfamilies of phage recombinases emerged either related to Rad52-like, Rad51-like or Gp2.5-like proteins. For two newly detected recombinases belonging to the Sak4 and Gp2.5 families, we provide experimental evidence of their recombination activity in vivo. Temperate versus virulent lifestyle together with the importance of genome mosaicism is discussed in the light of these novel recombinases. Screening for these recombinases in genomes can be performed at http://biodev.extra.cea.fr/virfam.
Bacteriophages (or phages) dominate the biosphere both numerically and in terms of genetic diversity. In particular, genomic comparisons suggest a remarkable level of horizontal gene transfer among temperate phages, favoring a high evolution rate. Molecular mechanisms of this pervasive mosaicism are mostly unknown. One hypothesis is that phage encoded recombinases are key players in these horizontal transfers, thanks to their high efficiency and low fidelity. Here, we associate two complementary in vivo assays and a bioinformatics analysis to address the role of phage encoded recombinases in genomic mosaicism. The first assay allowed determining the genetic determinants of mosaic formation between lambdoid phages and Escherichia coli prophage remnants. In the second assay, recombination was monitored between sequences on phage λ, and allowed to compare the performance of three different Rad52-like recombinases on the same substrate. We also addressed the importance of homologous recombination in phage evolution by a genomic comparison of 84 E. coli virulent and temperate phages or prophages. We demonstrate that mosaics are mainly generated by homology-driven mechanisms that tolerate high substrate divergence. We show that phage encoded Rad52-like recombinases act independently of RecA, and that they are relatively more efficient when the exchanged fragments are divergent. We also show that accessory phage genes orf and rap contribute to mosaicism. A bioinformatics analysis strengthens our experimental results by showing that homologous recombination left traces in temperate phage genomes at the borders of recently exchanged fragments. We found no evidence of exchanges between virulent and temperate phages of E. coli. Altogether, our results demonstrate that Rad52-like recombinases promote gene shuffling among temperate phages, accelerating their evolution. This mechanism may prove to be more general, as other mobile genetic elements such as ICE encode Rad52-like functions, and play an important role in bacterial evolution itself.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.