Microbiota-induced cytokine responses participate in gut homeostasis, but the cytokine balance at steady-state and the role of individual bacterial species in setting the balance remain elusive. Herein, systematic analysis of gnotobiotic mice indicated that colonization by a whole mouse microbiota orchestrated a broad spectrum of proinflammatory T helper 1 (Th1), Th17, and regulatory T cell responses whereas most tested complex microbiota and individual bacteria failed to efficiently stimulate intestinal T cell responses. This function appeared the prerogative of a restricted number of bacteria, the prototype of which is the segmented filamentous bacterium, a nonculturable Clostridia-related species, which could largely recapitulate the coordinated maturation of T cell responses induced by the whole mouse microbiota. This bacterium, already known as a potent inducer of mucosal IgA, likely plays a unique role in the postnatal maturation of gut immune functions. Changes in the infant flora may thus influence the development of host immune responses.
Life history theory accounts for variations in many traits involved in the reproduction and survival of living organisms, by determining the constraints leading to trade-offs among these different traits. The main life history traits of phages—viruses that infect bacteria—are the multiplication rate in the host, the survivorship of virions in the external environment, and their mode of transmission. By comparing life history traits of 16 phages infecting the bacteria Escherichia coli, we show that their mortality rate is constant with time and negatively correlated to their multiplication rate in the bacterial host. Even though these viruses do not age, this result is in line with the trade-off between survival and reproduction previously observed in numerous aging organisms. Furthermore, a multiple regression shows that the combined effects of two physical parameters, namely, the capsid thickness and the density of the packaged genome, account for 82% of the variation in the mortality rate. The correlations between life history traits and physical characteristics of virions may provide a mechanistic explanation of this trade-off. The fact that this trade-off is present in this very simple biological situation suggests that it might be a fundamental property of evolving entities produced under constraints. Moreover, such a positive correlation between mortality and multiplication reveals an underexplored trade-off in host–parasite interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.