Abstract. The efficiency of Public Transportation (PT) Networks is a major goal of any urban area authority. Advances on both location and communication devices drastically increased the availability of the data generated by their operations. Adequate Machine Learning methods can thus be applied to identify patterns useful to improve the Schedule Plan. In this paper, the authors propose a fully automated learning framework to determine the best Schedule Coverage to be assigned to a given PT network based on Automatic Vehicle location (AVL) and Automatic Passenger Counting (APC) data. We formulate this problem as a clustering one, where the best number of clusters is selected through an ad-hoc metric. This metric takes into account multiple domain constraints, computed using Sequence Mining and Probabilistic Reasoning. A case study from a large operator in Sweden was selected to validate our methodology. Experimental results suggest necessary changes on the Schedule coverage. Moreover, an impact study was conducted through a large-scale simulation over the affected time period. Its results uncovered potential improvements of the schedule reliability on a large scale.
Travel time is a crucial measure in transportation. Accurate travel time prediction is also fundamental for operation and advanced information systems. A variety of solutions exist for short-term travel time predictions such as solutions that utilize real-time GPS data and optimization methods to track the path of a vehicle. However, reliable long-term predictions remain challenging. We show in this paper the applicability and usefulness of travel time i.e. delivery time prediction for postal services. We investigate several methods such as linear regression models and tree based ensembles such as random forest, bagging, and boosting, that allow to predict delivery time by conducting extensive experiments and considering many usability scenarios. Results reveal that travel time prediction can help mitigate high delays in postal services. We show that some boosting algorithms, such as light gradient boosting and catboost, have a higher performance in terms of accuracy and runtime efficiency than other baselines such as linear regression models, bagging regressor and random forest.
Ensembles are popular methods for solving practical supervised learning problems. They reduce the risk of having underperforming models in production-grade software. Although critical, methods for learning heterogeneous regression ensembles have not been proposed at large scale, whereas in classical ML literature, stacking, cascading and voting are mostly restricted to classification problems. Regression poses distinct learning challenges that may result in poor performance, even when using well established homogeneous ensemble schemas such as bagging or boosting.In this paper, we introduce MetaBags, a novel, practically useful stacking framework for regression. MetaBags is a meta-learning algorithm that learns a set of meta-decision trees designed to select one base model (i.e. expert) for each query, and focuses on inductive bias reduction. A set of meta-decision trees are learned using different types of meta-features, specially created for this purpose. Each meta-decision tree is learned on a different data bootstrap sample, and, given a new example, selects a suitable base model that computes a prediction. Finally, these predictions are aggregated into a single prediction. This procedure is designed to learn a model with a fair bias-variance trade-off, and its improvement over base model performance is correlated with the prediction diversity of different experts on specific input space subregions. The proposed method and meta-features are designed in such a way that they enable good predictive performance even in subregions of space which are not adequately represented in the available training data.An exhaustive empirical testing of the method was performed, evaluating both generalization error and scalability of the approach on synthetic, open and real-world application datasets. The obtained results show that our method significantly outperforms existing state-of-the-art approaches.
Floating car data (FCD) denotes the type of data (location, speed, and destination) produced and broadcasted periodically by running vehicles. Increasingly, intelligent transportation systems take advantage of such data for prediction purposes as input to road and transit control and to discover useful mobility patterns with applications to transport service design and planning, to name just a few applications. However, there are considerable quality issues that affect the usefulness and efficacy of FCD in these many applications. In this paper, we propose a methodology to compute such quality indicators automatically for large FCD sets. It leverages on a set of statistical indicators (named Yuki-san) covering multiple dimensions of FCD such as spatio-temporal coverage, accuracy, and reliability. As such, the Yuki-san indicators provide a quick and intuitive means to assess the potential "value" and "veracity" characteristics of the data. Experimental results with two mobility-related data mining and supervised learning tasks on the basis of two real-world FCD sources show that the Yuki-san indicators are indeed consistent with how well the applications perform using the data. With a wider variety of FCD (e.g., from navigation systems and CAN buses) becoming available, further research and validation into the dimensions covered and the efficacy of the Yuki-San indicators is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.