Fifth generation (5G) wireless networks are expected to utilize wide bandwidths available at millimeter wave (mmWave) frequencies for enhancing system throughput. However, the unfavorable channel conditions of mmWave links, e.g., higher path loss and attenuation due to atmospheric gases or water vapor, hinder reliable communications. To compensate for these severe losses, it is essential to have a multitude of antennas to generate sharp and strong beams for directional transmission. In this paper, we consider mmWave systems using uniform planar array (UPA) antennas, which effectively place more antennas on a two-dimensional grid. A hybrid beamforming setup is also considered to generate beams by combining a multitude of antennas using only a few radio frequency chains. We focus on designing a set of transmit beamformers generating beams adapted to the directional characteristics of mmWave links assuming a UPA and hybrid beamforming. We first define ideal beam patterns for UPA structures. Each beamformer is constructed to minimize the mean squared error from the corresponding ideal beam pattern. Simulation results verify that the proposed codebooks enhance beamforming reliability and data rate in mmWave systems.Index Terms-Millimeter wave communications, Hybrid beamforming, Codebook design algorithm, Uniform planar array.
Abstract-Fifth generation wireless systems are expected to employ multiple antenna communication at millimeter wave (mmWave) frequencies using small cells within heterogeneous cellular networks. The high path loss of mmWave as well as physical obstructions make communication challenging. To compensate for the severe path loss, mmWave systems may employ a beam alignment algorithm that facilitates highly directional transmission by aligning the beam direction of multiple antenna arrays. This paper discusses a mmWave system employing dualpolarized antennas. First, we propose a practical soft-decision beam alignment (soft-alignment) algorithm that exploits orthogonal polarizations. By sounding the orthogonal polarizations in parallel, the equality criterion of the Welch bound for training sequences is relaxed. Second, the analog beamforming system is adapted to the directional characteristics of the mmWave link assuming a high Ricean K-factor and poor scattering environment. The soft-algorithm enables the mmWave system to align innumerable narrow beams to channel subspace in an attempt to effectively scan the mmWave channel. Thirds, we propose a method to efficiently adapt the number of channel sounding observations to the specific channel environment based on an approximate probability of beam misalignment. Simulation results show the proposed soft-alignment algorithm with adaptive sounding time effectively scans the channel subspace of a mobile user by exploiting polarization diversity.Index Terms-Millimeter wave wireless, Dual-polarized channel, Beam alignment algorithm.
Massive multiple-input multiple-output (MIMO) systems, which utilize a large number of antennas at the base station, are expected to enhance network throughput by enabling improved multiuser MIMO techniques. To deploy many antennas in reasonable form factors, base stations are expected to employ antenna arrays in both horizontal and vertical dimensions, which is known as full-dimension (FD) MIMO. The most popular two-dimensional array is the uniform planar array (UPA), where antennas are placed in a grid pattern. To exploit the full benefit of massive MIMO in frequency division duplexing (FDD), the downlink channel state information (CSI) should be estimated, quantized, and fed back from the receiver to the transmitter. However, it is difficult to accurately quantize the channel in a computationally efficient manner due to the high dimensionality of the massive MIMO channel. In this paper, we develop both narrowband and wideband CSI quantizers for FD-MIMO taking the properties of realistic channels and the UPA into consideration. To improve quantization quality, we focus on not only quantizing dominant radio paths in the channel, but also combining the quantized beams. We also develop a hierarchical beam search approach, which scans both vertical and horizontal domains jointly with moderate computational complexity. Numerical simulations verify that the performance of the proposed quantizers is better than that of previous CSI quantization techniques.Index Terms-Massive MIMO, full-dimension MIMO, uniform planar arrays, Kronecker product codebooks.J. Song is with 2 We consider the W +1 2 -th subcarrier to ignore beam squinting effects [35].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.