Purpose It is clinically challenging to integrate genomic-classifier results that report a numeric risk of recurrence into treatment recommendations for localized prostate cancer, which are founded in the framework of risk groups. We aimed to develop a novel clinical-genomic risk grouping system that can readily be incorporated into treatment guidelines for localized prostate cancer. Materials and Methods Two multicenter cohorts (n = 991) were used for training and validation of the clinical-genomic risk groups, and two additional cohorts (n = 5,937) were used for reclassification analyses. Competing risks analysis was used to estimate the risk of distant metastasis. Time-dependent c-indices were constructed to compare clinicopathologic risk models with the clinical-genomic risk groups. Results With a median follow-up of 8 years for patients in the training cohort, 10-year distant metastasis rates for National Comprehensive Cancer Network (NCCN) low, favorable-intermediate, unfavorable-intermediate, and high-risk were 7.3%, 9.2%, 38.0%, and 39.5%, respectively. In contrast, the three-tier clinical-genomic risk groups had 10-year distant metastasis rates of 3.5%, 29.4%, and 54.6%, for low-, intermediate-, and high-risk, respectively, which were consistent in the validation cohort (0%, 25.9%, and 55.2%, respectively). C-indices for the clinical-genomic risk grouping system (0.84; 95% CI, 0.61 to 0.93) were improved over NCCN (0.73; 95% CI, 0.60 to 0.86) and Cancer of the Prostate Risk Assessment (0.74; 95% CI, 0.65 to 0.84), and 30% of patients using NCCN low/intermediate/high would be reclassified by the new three-tier system and 67% of patients would be reclassified from NCCN six-tier (very-low- to very-high-risk) by the new six-tier system. Conclusion A commercially available genomic classifier in combination with standard clinicopathologic variables can generate a simple-to-use clinical-genomic risk grouping that more accurately identifies patients at low, intermediate, and high risk for metastasis and can be easily incorporated into current guidelines to better risk-stratify patients.
An unnatural base-pair architecture with base pairs 2.4 Å larger than the natural DNA-based genetic system (xDNA) is evaluated for its ability to function like DNA, encoding amino acids in the context of living cells. xDNA bases are structurally analogous to natural bases but with benzene added, increasing their sizes and resulting in a duplex that is wider than native B-DNA. Plasmids encoding green fluorescent protein were constructed to contain single and multiple xDNA bases (as many as eight) in both strands, and were transfected into E. coli. Although yielding fewer colonies than the natural control plasmid, in all cases in which a modified plasmid (containing one, two, three, or four consecutive size-expanded base pairs) the correct codon bases were substituted, yielding green colonies. All four xDNA bases (xA, xC, xG, xT) were found to encode the correct partners in the replicated plasmid DNA, both alone and in longer segments of xDNA. Controls with mutant cell lines having repair functions deleted were found to express the gene correctly, ruling out repair of xDNA and confirming polymerase reading of the unnatural bases. Preliminary experiments with polymerase deletion mutants suggested combined roles of replicative and lesion-bypass polymerases in inserting correct bases opposite xDNA bases and in bypassing the xDNA segments. These experiments demonstrate a biologically functioning synthetic genetic set with larger-than-natural architecture.
Biopsy Decipher predicted metastasis and prostate cancer-specific mortality risk from diagnostic biopsy specimens.
We studied the genomic characteristics of tumors from men diagnosed with low-risk prostate cancer. We found three main subtypes of prostate cancer with divergent tumor biology, similar to what has previously been found in women with breast cancer. In addition, we found that genomic risk scores were associated with worse pathology findings and prostate-specific antigen recurrence after surgery. These results suggest even greater genomic diversity among low-risk patients than has previously been documented with more limited signatures.
ETS family gene fusions are common in prostate cancer and molecularly define a tumor subset. ERG is the most commonly rearranged, leading to its overexpression, followed by ETV1, ETV4, and ETV5, and these alterations are generally mutually exclusive. We validated the Decipher prostate cancer assay to detect ETS alterations in a Clinical Laboratory Improvement Amendments-accredited laboratory. Benchmarking against ERG immunohistochemistry and ETV1/4/5 RNA in situ hybridization, we examined the accuracy, precision, and reproducibility of gene expression ETS models using formalin-fixed, paraffin-embedded samples. The m-ERG model achieved an area under curve of 95%, with 93% sensitivity and 98% specificity to predict ERG immunohistochemistry status. The m-ETV1, -ETV4, and -ETV5 models achieved areas under curve of 98%, 88%, and 99%, respectively. The models had 100% robustness for ETS status, and scores were highly correlated across sample replicates. Models predicted 41.5% of a prospective radical prostatectomy cohort (n = 4036) to be ERG, 6.3% ETV1, 1% ETV4, and 0.4% ETV5. Of prostate tumor biopsy samples (n = 509), 41.2% were ERG, 8.6% ETV1, 0.4% ETV4, and none ETV5. Higher Decipher risk status tumors were more likely to be ETS (ERG or ETV1/4/5) in the radical prostatectomy and the biopsy cohorts (P < 0.05). These results support the utility of microarray-based ETS status prediction models for molecular classification of prostate tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.