Adult tuberculosis (TB) is the main cause of TB epidemic and death. The infection results mainly by endogenous reactivation of latent TB infection and secondarily transmitted by exogenous infection. There is no vaccine for adult TB. To this end, we first chose antigens from a potential antigenic reservoir. The antigens strongly recognized T cells from latent and active TB infections that responded to antigens expressed by Mycobacterium tuberculosis cultured under different metabolic states. Fusions of single-stage polyprotein CTT3H, two-stage polyprotein A1D4, and multistage CMFO were constructed. C57BL/6 mice vaccinated with DMT adjuvant ed CMFO (CMFO-DMT) were protected more significantly than by CTT3H-DMT, and efficacy was similar to that of the only licensed vaccine, Bacillus Calmette–Guérin (BCG) and A1D4-DMT in the M. tuberculosis primary infection model. In the setting of BCG priming and latent TB infection, M. tuberculosis in the lung and spleen was eliminated more effectively in mice boosted with CMFO-DMT rather than with BCG, A1D4-DMT, or CTT3H-DMT. In particular, sterile immunity was only conferred by CMFO-DMT, which was associated with expedited homing of interferon-gamma+ CD4+ TEM and interleukin-2+ TCM cells from the spleen to the infected lung. CMFO-DMT represents a promising candidate to prevent the occurrence of adult TB through both prophylactic and therapeutic methods, and warrants assessment in preclinical and clinical trials.
There is an urgent need for a vaccine against tuberculosis (TB) that is more effective than the current sole licensed option. However, target antigens of Mycobacterium tuberculosis with the vaccine potential remain elusive. Five immunodominant antigens with characteristic expressions at the stages of primary infection (Ag85A), the regulation of nutrition and metabolism when transferring from rapid growth to latency (PhoY2 and Rv3407), latency (Rv2626c), and reactivation (RpfB) were selected to construct the fusion polyprotein WH121, which has better immunogenicity and protection than each multistage antigen. DMT adjuvanted WH121 vaccinated C57BL/6 mice could confer persistent and significant protection against the respiratory challenge with 80 CFU of virulent M. tuberculosis H37Rv at 9 and 18 weeks after immunization, as the BCG vaccine did. Moreover, WH121/DMT could boost the BCG primed mice against post-exposure infection, and more significantly inhibit the growth of M. tuberculosis in the spleen than BCG repeat vaccination. The protection elicited by WH121/DMT is attributed to the WH121-specific Th1-type biased immune responses, characterized by increased antigen-specific IgG2a/IgG1 ratio and high levels of IFN-γ secreted by the splenocytes of vaccinated mice. In particular, high levels of IFN-γ+ TEM cells in the spleen are an effective biomarker for the vaccine-induced early protection, and the persistent protection mainly depends on the increasing IL-2+IFN-γ+CD4+ and CD8+ T cells, especially IL-2+ TCM cells. These findings demonstrate that multistage-specific antigens might be promising targets for the next generation TB vaccine, and a combination of these antigens such as WH121/DMT is required for further preclinical evaluation.
Granulysin is a cytolytic molecule with perforin and granzymes that is expressed by activated human CTLs, NK and γδ T cells, and it has broad antimicrobial activity, including to drug-sensitive and drug-resistant Mycobacterium tuberculosis. We hypothesized that approaches facilitating the expression of granulysin in M. tuberculosis-infected host cells in the lung may provide a novel treatment strategy for pulmonary TB. In this study, a recombinant replication-deficient adenovirus serotype 5-based rAdhGLi was constructed that expressed human granulysin in the cytosol of the U937 and RAW264.7 macrophage-like cell lines as confirmed by western blotting and co-localization technology using indirect immunofluorescence staining. Ninety-six hours after both cell lines were infected with M. tuberculosis, acid-fast staining and enumeration demonstrated that rAdhGLi-treated cells had a lower colony-forming units (CFU) of intracellular bacteria than culture medium or AdNull controls. Granulysin was only expressed in the lung and not in other organs following inhalation of rAdhGLi. In particular, immunocompetent BALB/c mice or SCID mice intranasally infected with ~200 CFU of virulent M. tuberculosis H37Rv intranasally were treated with rAdhGLi, and they showed decreased bacterial loads in the lung when compared with phosphate-buffered saline or AdNull controls. Importantly, a clear dose-dependent rAdhGLi treatment efficacy was found in infected BALB/c mice, with the most significant reduction in lung bacteria obtained in BALB/c mice treated with 10(9) plaque-forming units of rAdhGLi without any pathological changes. Our study indicates that rAdhGLi may be used as a novel and efficient treatment strategy with the capability to directly kill intracellular M. tuberculosis.
Tuberculosis (TB) remains one of the most menacing infectious diseases, although attenuated Mycobacterium bovis Bacillus Calmette-Guerin (BCG) vaccine has been widely used to protect children against primary TB. There are increasing evidences that rapid growing and dormant Mycobacterium tuberculosis (M. tuberculosis) coexist in vivo after infection. However, BCG vaccine only elicits cell-mediated immune responses to secretory antigens expressed by rapid growing pathogen. BCG vaccine is thus unable to thwart the reactivation of latent tuberculosis infection (LTBI), and its protection wanes over age after neonatal immunization. In order to extend its ability for a durable protection, a novel recombinant BCG (rBCG) strain, named rBCG::XB, was constructed by overexpressing immunodominant multistage antigens of Ag85B and HspX, which are expressed by both rapid replicating and dormant M. tuberculosis. Long-term protective effect and immunogenicity of rBCG::XB were compared with the parental BCG in vaccinated C57BL/6 mice. Our results demonstrated that rBCG::XB provided the stronger and long-lasting protection against M. tuberculosis H37Rv intranasal infection than BCG. The rBCG::XB not only elicited the more durable multistage antigen-specific CD4(+)Th1-biased immune responses and specific polyfunctional CD4(+)T cells but also augmented the CD8(+) CTL effects against Ag85B in vivo. In particular, higher levels of CD4(+) TEM and CD8(+) TCM cells, dominated by IL2(+) CD4(+) and CD8(+) TCM cells, were obtained in the spleen of rBCG::XB vaccinated mice. Therefore, our findings indicate that rBCG::XB is a promising candidate to improve the efficacy of BCG.
BackgroundIntracellular bacterium, Mycobacterium tuberculosis (M. tb), infects specifically macrophages as host cells. IRAK-M, a member of IRAK family, is a negative regulator in TLR signaling and specifically expresses in monocytes and macrophages. The role of IRAK-M in intracellular growth of M. tb and macrophage polarization was explored, for deeply understanding the pathogenesis of M. tb, the significance of IRAK-M to innate immunity and pathogen-host interaction.MethodsIRAK-M expression was detected in M. tb infected macrophages and in human lung tissue of pulmonary tuberculosis with immunofluorescence staining, Western blot and immunohistochemistry. IRAK-M knock-down and over-expressing cell strains were constructed and intracellular survival of M. tb was investigated by acid-fast staining and colony forming units. Molecular markers of M1-type (pSTAT1 and iNOS) and M2-type (pSTAT6 and Arg-1) macrophages were detected using Western blot in IRAK-M knockdown U937 cells infected with M. tb H37Rv. U937 cells were stimulated with immunostimulant CpG7909 into M1 status and then infected with M. tb H37Rv. Expression of IRAK-M, IRAK-4 and iNOS was detected with immunofluorescence staining and Western blot, to evaluate the effect of IRAK-M to CpG directed M1-type polarization of macrophages during M. tb infection. Molecules related with macrophage’s bactericidal ability such as Hif-1 and phosphorylated ERK1/2 were detected with immunohistochemistry and Western blot.ResultsIRAK-M increased in M. tb infected macrophage cells and also in human lung tissue of pulmonary tuberculosis. IRAK-M over-expression resulted in higher bacterial load, while IRAK-M interference resulted in lower bacterial load in M. tb infected cells. During M. tb infection, IRAK-M knockdown induced M1-type, while inhibited M2-type polarization of macrophage. M1-type polarization of U937 cells induced by CpG7909 was inhibited by M. tb infection, which was reversed by IRAK-M knockdown in U937 cells. IRAK-M affected Hif-1 and MAPK signaling cascade during M. tb infection.ConclusionsConclusively, IRAK-M might alter the polarity of macrophages, to facilitate intracellular survival of M. tb and affect Th1-type immunity of the host, which is helpful to understanding the pathogenesis of M. tb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.