Purified virion DNA of about 200 kilobase pairs of tupaia herpesvirus strain 2 was cleaved with EcoRI or HindlIl restriction endonuclease. Restriction fragments representing the complete viral genome including both termini were inserted into the EcoRI, HindIII, and EcoRI-HindIII sites of the bacterial plasmid pAT153. Restriction maps for the restriction endonucleases EcoRI and Hindlll were constructed with data derived from Southern blot hybridizations of individual viral DNA fragments or cloned DNA fragments which were hybridized to either viral genome fragments or recombinant plasmids. The analysis revealed that the tupaia herpesvirus genome consists of a long unique sequence of 200 kilobase pairs and that inverted repeat DNA sequences of greater than 40 base pairs do not occur, in agreement with previous electron microscopic data. No DNA sequence homology was detectable between the tupaia herpesvirus DNA and the genome of murine cytomegalovirus, which was reported to have a similar structure. In addition, seven individual isolates of tupaia herpesvirus were characterized. The isolates can be grouped into five strains by their DNA cleavage patterns.
Partially spliced precursor mRNAs (pre‐mRNAs) in the steady‐state population of RNA from chloroplasts of Euglena gracilis were found by electron microscopy. The structure and the frequency of the pre‐mRNAs of the psbA gene (the gene for the 32‐kd protein of photosystem II), which is split by four introns in Euglena chloroplasts was analysed by electron microscopy. A chloroplast DNA (cpDNA) fragment containing the psbA gene from Euglena, was cloned into a pEMBL vector. The single‐stranded recombinant phage DNA of the coding strand was prepared and hybridized with cpRNA. The majority of hybrids were formed with mature mRNA, but ˜8% of the hybrids were formed with pre‐mRNAs. The pre‐mRNAs were either unspliced or incompletely spliced. A detailed analysis of the structure and the frequency of the pre‐mRNAs of the psbA gene showed that the four introns are neither spliced out in a strictly random way, nor in a 5′‐3′ or 3′‐5′ direction. Introns 2 and 3 are preferentially spliced out first, intron 1 intermediately and intron 4 is generally spliced out last. However, this sequence is not a strict rule. We conclude that the introns can be spliced independently, each one at a different rate. The coding strand from a fragment of the psbA gene was separated and annealed with low mol. wt. cpRNA, which was isolated from an agarose gel. Small circular hybrids were found at the positions of the four introns, demonstrating for the first time covalently closed circular excised intron RNAs (iRNAs) in chloroplasts.
A method for the separation of complementary strands with the help of the biotin-avidin system is described. Restriction fragments were terminally labeled at both ends with biotinylated nucleotides. The DNA was cut by a second restriction enzyme, and the fragments were bound to an avidin agarose column. The non-biotinylated strands were eluted with 0.1 M NaOH, and the biotin-labeled strands were subsequently released from the column by elution with 50% guanidine isothiocyanate/formamide. Contamination of the separated strands by complementary single strands was less than 4%.-Separated linear single strands of the vector pEMBL were prepared. On annealing with recombinant circular DNA a substitution loop is formed which provides position and orientation markers for the unambiguous electron microscopic analysis of heteroduplexes or hybrids formed with the inserted sequences. -The terminal biotin label was visualized by complex formation with a streptavidin-ferritin conjugate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.