The kinetics of the uptake from blood to brain of pyruvate, lactate and glucose have been determined in rats of different ages. The carotid artery single injection technique was used in animals anaesthetized with pentobarbital. The rates of influx for each substrate were determined over a range of concentrations for the different age-groups. Data were analysed in terms of the Michaelis-Menten equation with a component to allow for non-saturable diffusion. Values are given for K , . V,,, and K,. In suckling rats (15-21 days) the V,,, values for both pyruvate and lactate were 2.0pmolg-' min-'. In 28-day-old rats the V,,, values had fallen to one-half and in adults they were less than one-tenth. K , values were higher in the younger animals. The rate of glucose transport in suckling
Using conventional autoradiographic and tissue counting techniques, the experimental quantitation of in vivo kinetics of prospective or established radioligands for PET is animal and labour intensive. The present study tested the feasibility of using PET itself to quantitate the specific binding of [11C]raclopride to rat striatum and to study the effects of experimental manipulation of endogenous dopamine on binding parameters. Carbon-11-labeled raclopride was given i.v. to anaesthetised rats, positioned in a PET camera and dynamic emission scans acquired over 60 min. Time-activity curves were generated for selected regions of interest, representing striatum and cerebellum and the striatal data fitted to a compartmental model, using cerebellum as the input function, thus circumventing the need for individual metabolite-corrected plasma curves. In control rats, the binding potential (BP), defined as the ratio of the rate constants for transfer from "free to bound" and "bound to free" compartments, was of the order of 0.6. This was reduced threefold by predosing with nonradioactive raclopride. Increasing extracellular dopamine levels by predosing with d-amphetamine resulted in a significant decrease in BP whereas reducing extracellular dopamine by predosing with gamma-butyrolactone caused a significant increase. Thus, despite the limitation in spatial resolution of PET, specific binding of raclopride could be assessed from regional time-activity curves from individual rats. The system was sufficiently sensitive that changes in BP could be detected following modulation of endogenous dopamine levels, a finding of potential relevance to the interpretation of clinical PET data.
PK 11195 is a selective and specific ligand for the peripheral-type benzodiazepine binding site. Its potential for in vivo visualisation of lesioned human brain using positron emission tomography (PET) is currently being assessed. The present study examines the relationship between the temporal development of a local ischaemic lesion with its associated cell populations and the binding of [3H]PK 11195 in rat brain. Unilateral cortical infarcts were induced using the photosensitive dye Rose Bengal. At time intervals from 1 to 7 days after lesioning, the localisation of [3H]PK 11195 binding was determined using in vivo and in vitro autoradiography. Sections adjacent to those used for autoradiography were processed for immunohistochemistry using glial fibrillary acidic protein for astrocytes and ED-1 for macrophages. The results show that the binding of [3H]PK 11195 correlates in both time and spatial localisation with the appearance of macrophages around the lesion. Reactive astrocytes, although present, occupy a separate region in the tissue surrounding the lesion and lie outside the region defined by the [3H]PK 11195 binding. We conclude that the [3H]PK 11195 signal associated with this ischaemic lesion originates primarily from binding to macrophages and that [11C]PK 11195 could be used for imaging acute inflammatory response in human brain using PET.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.