A potent, long-lasting form of interferon alpha-2a mono-pegylated with a 40 kilodalton branched poly(ethylene glycol) was designed, synthesized, and characterized. Mono-pegylated interferon alpha-2a was comprised of four major positional isomers involving Lys31, Lys121, Lys131, and Lys134 of interferon. The in vitro anti-viral activity of pegylated interferon alpha-2a was found to be only 7% of the original activity. In contrast, the in vivo antitumor activity was severalfold enhanced compared to interferon alpha-2a. Pegylated interferon alpha-2a showed no immunogenicity in mice. After subcutaneous injection of pegylated interferon alpha-2a, a 70-fold increase in serum half-life and a 50-fold increase in mean plasma residence time concomitant with sustained serum concentrations were observed relative to interferon alpha-2a. These preclinical results suggest a significantly enhanced human pharmacological profile for pegylated interferon alpha-2a. Results of Phase II/III hepatitis C clinical trials in humans confirmed the superior efficacy of pegylated interferon alpha-2a compared to unmodified interferon alpha-2a.
alpha-Galactosidase from soybean (Glycine max) was purified by a five-step procedure. The enzyme's natural substrates, raffinose and stachyose, have K(m)'s of 3. 0 mM and 4. 79 mM, respectively. The products, galactose and sucrose, were measured after separation by liquid chromatography. Galactose is a competitive product inhibitor of stachyose and raffinose hydrolysis with a K(i) of 0. 12 mM. We determined these parameters by an integral kinetic approach. Stachyose hydrolysis gives a nearly constant level of raffinose shortly after hydrolysis begins. Thus, cleavage of the first alpha-(1,6)-bond in the tetrasaccharide is the rate-limiting step. Since the stachyose hydrolysis yields raffinose, soybean alpha-galactosidase simultaneously hydrolyzes two substrates. We present a novel approach for analyzing simultaneous substrate hydrolysis with competitive product inhibition by a modified integral rate expression. The experimentally found kinetic parameters are confirmed by solving the simultaneous equations which describe the hydrolysis. This technique may be applicable to other hydrolytic enzymes with multiple substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.