Materials derived from extracellular matrices (ECMs) are being evaluated as scaffolds for surgical reconstruction of damaged or missing tissues. It is important to understand the susceptibility of these biological materials to bacterial infections. ECMs derived from porcine small intestinal submucosa (SIS) and urinary bladder submucosa (UBS) were found to possess antimicrobial activity. ECM extracts, obtained by digesting these acellular matrices in acetic acid, demonstrated antibacterial activity against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Antimicrobial activity was determined using a minimal inhibitory concentration assay. Bacteriostatic activity was detected at protein concentrations of ECM extracts equivalent to 0.77-1.60 mg/mL. ECM extracts were found to inhibit bacterial growth for up to at least 13 h. The resulting extracts consisted of water-soluble peptides and proteins with molecular weights ranging from <4 to >100 kDa and lower molecular weight compounds, as determined by size exclusion liquid chromatography.
In this paper, we show that dilute maleic acid, a dicarboxylic acid, hydrolyzes cellobiose, the repeat unit of cellulose, and the microcrystalline cellulose Avicel as effectively as dilute sulfuric acid but with minimal glucose degradation. Maleic acid, superior to other carboxylic acids reported in this paper, gives higher yields of glucose that is more easily fermented as a result of lower concentrations of degradation products. These results are especially significant because maleic acid, in the form of maleic anhydride, is widely available and produced in large quantities annually.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.