Expression studies have consistently identified tumor protein D52 (TPD52) overexpression in tumor cells. Murine TPD52 (mD52) shares 86% identity with the human orthologue. To study a possible role for TPD52 in transformation, 3T3 fibroblasts were transfected with the full-length cDNA for mD52. Expression of mD52 was confirmed by reverse transcription-PCR (RT-PCR), real-time PCR, and Western blot analysis compared with 3T3 and vector-transfected 3T3 (3T3.V), and the resultant cell line was designated 3T3.mD52. At 4 weeks, 3T3.mD52 gained a 2-fold increase in growth rate, lost contact inhibition, and exhibited a marked phenotype change. Further characterization revealed an acquired ability for anchorage-independent cell growth. To determine whether 3T3.mD52 had become tumorigenic, naïve, healthy, immunocompetent syngeneic mice were inoculated subcutaneously with varying cell doses. Tumors measuring >1 cm 2 were detected 60 days postinoculation with 3T3.mD52, and a 50% subcutaneous tumor incidence was obtained with as few as 5 Â 10 5 3T3.mD52 cells. Remarkably, when lungs from 3T3.mD52 tumor-bearing mice were analyzed, numerous tumor nodules were observed, ranging from nodules less than 10 to nodules too numerous to count (inoculation with 1 Â 10 5 and 5 Â 10 6 cells, respectively). Further support for the metastatic capacity of 3T3.mD52 was the demonstration that transforming growth factor (TGF)-BR1 (receptor) expression decreased and TGF-B1 secretion increased in 3T3.mD52 compared with 3T3 controls. cDNA microarray analysis showed a gene expression pattern that further supported mD52-induced transformation and metastasis. Together, these data suggest that mD52 expression in 3T3 cells initiated cellular transformation, tumorigenesis, and progression to metastasis. (Mol Cancer Res 2007;5(2):133 -44)
Kaposi’s sarcoma (KS) herpesvirus (KSHV) is the etiological agent of several immunodeficiency-linked cancers, including KS. Our previous work showed that the proto-oncogene c-kit is upregulated in KSHV-infected endothelial cells (EC), as well as in KS lesions. We show here that KSHV-dependent induction of both c-kit mRNA and protein requires the establishment of a latent infection and that this upregulation occurs in primary DMVEC as well as in immortalized DMVEC (eDMVEC). Interestingly, we find that while the lymphatic EC (LEC) subpopulation exhibits KSHV-induced c-Kit upregulation, the blood EC (BEC) subpopulation does not. Despite this upregulation of c-Kit, receptor activation and phosphorylation of downstream effectors such as MAP Kinase Erk 1/2 and GSK-3 still requires the addition of exogenous c-Kit ligand, stem cell factor (SCF). These data indicate that KSHV does not induce constitutive c-Kit signaling, but instead upregulates c-Kit receptor levels, thus allowing infected EC to respond to endogenous and exogenous SCF. Nonetheless, inhibition of either c-Kit activation or its downstream effectors reverses the characteristic spindle phenotype of infected eDMVEC. Together, these results contribute to our overall understanding of the role that the c-kit proto-oncogene plays in KS pathogenesis.
Supplementary Data from Induction of Tumorigenesis and Metastasis by the Murine Orthologue of Tumor Protein D52
<div>Abstract<p>Expression studies have consistently identified tumor protein D52 (TPD52) overexpression in tumor cells. Murine TPD52 (mD52) shares 86% identity with the human orthologue. To study a possible role for <i>TPD52</i> in transformation, 3T3 fibroblasts were transfected with the full-length cDNA for <i>mD52</i>. Expression of mD52 was confirmed by reverse transcription-PCR (RT-PCR), real-time PCR, and Western blot analysis compared with 3T3 and vector-transfected 3T3 (3T3.V), and the resultant cell line was designated 3T3.mD52. At 4 weeks, 3T3.mD52 gained a 2-fold increase in growth rate, lost contact inhibition, and exhibited a marked phenotype change. Further characterization revealed an acquired ability for anchorage-independent cell growth. To determine whether 3T3.mD52 had become tumorigenic, naïve, healthy, immunocompetent syngeneic mice were inoculated subcutaneously with varying cell doses. Tumors measuring >1 cm<sup>2</sup> were detected 60 days postinoculation with 3T3.mD52, and a 50% subcutaneous tumor incidence was obtained with as few as 5 × 10<sup>5</sup> 3T3.mD52 cells. Remarkably, when lungs from 3T3.mD52 tumor-bearing mice were analyzed, numerous tumor nodules were observed, ranging from nodules less than 10 to nodules too numerous to count (inoculation with 1 × 10<sup>5</sup> and 5 × 10<sup>6</sup> cells, respectively). Further support for the metastatic capacity of 3T3.mD52 was the demonstration that transforming growth factor (TGF)-βR1 (receptor) expression decreased and TGF-β1 secretion increased in 3T3.mD52 compared with 3T3 controls. cDNA microarray analysis showed a gene expression pattern that further supported <i>mD52</i>-induced transformation and metastasis. Together, these data suggest that mD52 expression in 3T3 cells initiated cellular transformation, tumorigenesis, and progression to metastasis. (Mol Cancer Res 2007;5(2):133–44)</p></div>
Supplementary Data from Induction of Tumorigenesis and Metastasis by the Murine Orthologue of Tumor Protein D52
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.