Expression studies have consistently identified tumor protein D52 (TPD52) overexpression in tumor cells. Murine TPD52 (mD52) shares 86% identity with the human orthologue. To study a possible role for TPD52 in transformation, 3T3 fibroblasts were transfected with the full-length cDNA for mD52. Expression of mD52 was confirmed by reverse transcription-PCR (RT-PCR), real-time PCR, and Western blot analysis compared with 3T3 and vector-transfected 3T3 (3T3.V), and the resultant cell line was designated 3T3.mD52. At 4 weeks, 3T3.mD52 gained a 2-fold increase in growth rate, lost contact inhibition, and exhibited a marked phenotype change. Further characterization revealed an acquired ability for anchorage-independent cell growth. To determine whether 3T3.mD52 had become tumorigenic, naïve, healthy, immunocompetent syngeneic mice were inoculated subcutaneously with varying cell doses. Tumors measuring >1 cm 2 were detected 60 days postinoculation with 3T3.mD52, and a 50% subcutaneous tumor incidence was obtained with as few as 5 Â 10 5 3T3.mD52 cells. Remarkably, when lungs from 3T3.mD52 tumor-bearing mice were analyzed, numerous tumor nodules were observed, ranging from nodules less than 10 to nodules too numerous to count (inoculation with 1 Â 10 5 and 5 Â 10 6 cells, respectively). Further support for the metastatic capacity of 3T3.mD52 was the demonstration that transforming growth factor (TGF)-BR1 (receptor) expression decreased and TGF-B1 secretion increased in 3T3.mD52 compared with 3T3 controls. cDNA microarray analysis showed a gene expression pattern that further supported mD52-induced transformation and metastasis. Together, these data suggest that mD52 expression in 3T3 cells initiated cellular transformation, tumorigenesis, and progression to metastasis. (Mol Cancer Res 2007;5(2):133 -44)
Blooms of the dinoflagellate Alexandrium spp., known as producers of paralytic shellfish toxins (PSTs), are regularly detected on the French coastline. PSTs accumulate into harvested shellfish species, such as the Pacific oyster Crassostrea gigas, and can cause strong disorders to consumers at high doses. The impacts of Alexandrium minutum on C. gigas have often been attributed to its production of PSTs without testing separately the effects of the bioactive extracellular compounds (BECs) with allelopathic, hemolytic, cytotoxic or ichthyotoxic properties, which can also be produced by these algae. The BECs, still uncharacterized, are excreted within the environment thereby impacting not only phytoplankton, zooplankton but also marine invertebrates and fishes, without implicating any PST. The aim of this work was to compare the effects of three strains of A. minutum producing either only PSTs, only BECs, or both PSTs and BECs, on the oyster C. gigas. Behavioral and physiological responses of oysters exposed during 4 days were monitored and showed contrasted behavioral and physiological responses in oysters supposedly depending on produced bioactive substances. The non-PST extracellular-compound-producing strain primarily strongly modified valve-activity behavior of C. gigas and induced hemocyte mobilization within the gills, whereas the PST-producing strain caused inflammatory responses within the digestive gland and disrupted the daily biological rhythm of valve activity behavior. BECs may therefore have a significant harmful effect on the gills, which is one of the first organ in contact with the extracellular substances released in the water by A. minutum. Conversely, the PSTs impact the digestive gland, where they are released and mainly accumulated, after degradation of algal cells during digestion process of bivalves. This study provides a better understanding of the toxicity of A. minutum on oyster and highlights the significant role of BECs in this toxicity calling for further chemical characterization of these substances.
Tumor protein D52 (TPD52) is involved in transformation and metastasis and has been shown to be over-expressed in tumor cells compared to normal cells and tissues. Murine TPD52 (mD52) shares 86% protein identity with the human TPD52 orthologue (hD52). To study TPD52 protein as a target for active vaccination recombinant, mD52 was administered as a protein-based vaccine. Naïve mice were immunized with either mD52 protein and CpG/ODN as a molecular adjuvant or CpG/ODN alone. Two weeks following the final immunization, mice were challenged s.c. with syngeneic tumor cells that over-express mD52. Two distinct murine tumor cell lines were used for challenge in this model, mKSA and 3T3.mD52. Half of the mice immunized with mD52 and CpG/ODN rejected or delayed onset of mKSA s.c. tumor cell growth, and 40% of mice challenged with 3T3.mD52 rejected s.c. tumor growth, as well as the formation of spontaneous lethal lung metastases. Mice immunized with mD52 and CpG/ODN generated detectable mD52-specific IgG antibody responses indicating that mD52 protein vaccination induced an adaptive immune response. In addition, mice that rejected tumor challenge generated tumor-specific cytotoxic T lymphocytes' responses. Importantly, microscopic and gross evaluation of organs from mD52 immunized mice revealed no evidence of autoimmunity as assessed by absence of T cell infiltration and absence of microscopic pathology. Together, these data demonstrate that mD52 vaccination induces an immune response that is capable of rejecting tumors that over-express mD52 without the induction of harmful autoimmunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.