Alzheimer disease is the most common cause of dementia. It occurs worldwide and affects all ethnic groups. The incidence of Alzheimer disease is increasing due, in part, to increased life expectancy and the aging baby boomer generation. The average lifetime risk of developing Alzheimer disease is 10–12%. This risk at least doubles with the presence of a first-degree relative with the disorder. Despite its limited utility, patients express concern over their risk and, in some instances, request testing. Furthermore, research has demonstrated that testing individuals for apoli-poprotein E can be valuable and safe in certain contexts. However, because of the complicated genetic nature of the disorder, few clinicians are prepared to address the genetic risks of Alzheimer disease with their patients. Given the increased awareness in family history thanks to family history campaigns, the increasing incidence of Alzheimer disease, and the availability of direct to consumer testing, patient requests for information is increasing. This practice guideline provides clinicians with a framework for assessing their patients’ genetic risk for Alzheimer disease, identifying which individuals may benefit from genetic testing, and providing the key elements of genetic counseling for AD.
Pedigrees from 269 patients with frontotemporal lobar degeneration (FTLD), including frontotemporal dementia (FTD), FTD with ALS (FTD/ALS), progressive nonfluent aphasia, semantic dementia (SD), corticobasal degeneration, and progressive supranuclear palsy were analyzed to determine the degree of heritability of these disorders. FTD/ALS was the most and SD the least heritable subtype. FTLD syndromes appear to have different etiologies and recurrence risks.
Background-Frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) is a heritable form of FTD, but the gene(s) responsible for the majority of autosomal dominant FTD-ALS cases have yet to be found. Previous studies have identified a region on chromosome 9p that is associated with FTD and ALS.
Familial idiopathic basal ganglia calcification (IBGC) or Fahr’s
disease is a rare neurodegenerative disorder characterized by calcium deposits
in the basal ganglia and other brain regions, which is associated with
neuropsychiatric and motor symptoms. Familial IBGC is genetically heterogeneous
and typically transmitted in an autosomal dominant fashion. We performed a
mutational analysis of SLC20A2, the first gene found to cause
IBGC, to assess its genetic contribution to familial IBGC. We recruited 218
subjects from 29 IBGC-affected families of varied ancestry and collected medical
history, neurological exam, and head CT scans to characterize each
patient’s disease status. We screened our patient cohort for mutations
in SLC20A2. Twelve novel (nonsense, deletions, missense, and
splice site) potentially pathogenic variants, one synonymous variant, and one
previously reported mutation were identified in 13 families. Variants predicted
to be deleterious cosegregated with disease in five families. Three families
showed nonsegregation with clinical disease of such variants, but retrospective
review of clinical and neuroimaging data strongly suggested previous
misclassification. Overall, mutations in SLC20A2 account for as
many as 41 % of our familial IBGC cases. Our screen in a large series
expands the catalog of SLC20A2 mutations identified to date and
demonstrates that mutations in SLC20A2 are a major cause of
familial IBGC. Non-perfect segregation patterns of predicted deleterious
variants highlight the challenges of phenotypic assessment in this condition
with highly variable clinical presentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.