Burmese python (Python bivittatus) is an invasive snake that has significantly affected ecosystems in southern Florida, United States. Aside from direct predation and competition, invasive species can also introduce nonnative pathogens that can adversely affect native species. The subfamily Serpentovirinae (order Nidovirales) is composed of positive-sense RNA viruses primarily found in reptiles. Some serpentoviruses, such as shingleback nidovirus, are associated with mortalities in wild populations, while others, including ball python nidovirus and green tree python nidovirus can be a major cause of disease and mortality in captive animals. To determine if serpentoviruses were present in invasive Burmese pythons in southern Florida, oral swabs were collected from both free-ranging and long-term captive snakes. Swabs were screened for the presence of serpentovirus by reverse transcription PCR and sequenced. A total serpentovirus prevalence of 27.8% was detected in 318 python samples. Of the initial swabs from 172 free-ranging pythons, 42 (24.4%) were positive for multiple divergent viral sequences comprising four clades across the sampling range. Both sex and snout-vent length were statistically significant factors in virus prevalence, with larger male snakes having the highest prevalence. Sampling location was statistically significant in circulating virus sequence. Mild clinical signs and lesions consistent with serpentovirus infection were observed in a subset of sampled pythons. Testing of native snakes (n = 219, 18 species) in part of the python range found no evidence of python virus spillover; however, five individual native snakes (2.3%) representing three species were PCR positive for unique, divergent serpentoviruses. Calculated pairwise uncorrected distance analysis indicated the newly discovered virus sequences likely represent three novel genera in the subfamily Serpentovirinae. This study is the first to characterize serpentovirus in wild free-ranging pythons or in any free-ranging North America reptile. Though the risk these viruses pose to the invasive and native species is unknown, the potential for spillover to native herpetofauna warrants further investigation.
Burmese pythons (Python molurus bivittatus) are native to southeastern Asia, however, there is an established invasive population inhabiting much of southern Florida throughout the Greater Everglades Ecosystem. Pythons have severely impacted native species and ecosystems in Florida and represent one of the most intractable invasive-species management issues across the globe. The difficulty stems from a unique combination of inaccessible habitat and the cryptic and resilient nature of pythons that thrive in the subtropical environment of southern Florida, rendering them extremely challenging to detect. Here we provide a comprehensive review and synthesis of the science relevant to managing invasive Burmese pythons. We describe existing control tools and review challenges to productive research, identifying key knowledge gaps that would improve future research and decision making for python control.
The design of successful invasive species control programs is often hindered by the absence of basic demographic data on the targeted population. Establishment of invasive Burmese pythons (Python molurus bivittatus) in the Greater Everglades Ecosystem, Florida USA has led to local precipitous declines (> 90%) of mesomammal populations and is also a major threat to native populations of reptiles and birds. Efforts to control this species are ongoing but are hampered by the lack of access to and information on the expected biological patterns of pythons in southern Florida. We present data from more than 4,000 wild Burmese pythons that were removed in southern Florida over 26 years (1995–2021), the most robust dataset representing this invasive population to date. We used these data to characterize Burmese python size distribution, size at maturity, clutch size, and seasonal demographic and reproductive trends. We broadened the previously described size ranges by sex and, based on our newly defined size-stage classes, showed that males are smaller than females at sexual maturity, confirmed a positive correlation between maternal body size and potential clutch size, and developed predictive equations to facilitate demographic predictions. We also refined the annual breeding season (approx.100 days December into March), oviposition timing (May), and hatchling emergence and dispersal period (July through October) using correlations of capture morphometrics with observations of seasonal gonadal recrudescence (resurgence) and regression. Determination of reproductive output and timing can inform population models and help managers arrest population growth by targeting key aspects of python life history. These results define characteristics of the species in Florida and provide an enhanced understanding of the ecology and reproductive biology of Burmese pythons in their invasive Everglades range.
Reptiles utilize a variety of environmental cues to inform and drive animal behavior such as chemical scent trails produced by food or conspecifics. Decrypting the scenttrailing behavior of vertebrates, particularly invasive species, enables the discovery of cues that induce exploratory behavior and can aid in the development of valuable basic and applied biological tools. However, pinpointing behaviors dominantly driven by chemical cues versus other competing environmental cues can be challenging. Ymazes are common tools used in animal behavior research that allow quantification of vertebrate chemosensory behavior across a range of taxa. By reducing external stimuli, Y-mazes remove confounding factors and present focal animals with a binary choice. In our Y-maze studies, a scenting animal is restricted to one arm of the maze to leave a scent trail and is removed once scent-laying parameters have been met.Then, depending on the trial type, either the focal animal is allowed into the maze, or a competing scent trail is created. The result is a record of the focal animal's choice and behavior while discriminating between the chemical cues presented. Here, two Ymaze apparatuses tailored to different invasive reptile species: Argentine black and white tegu lizards (Salvator merianae) and Burmese pythons (Python bivittatus) are described, outlining the operation and cleaning of these Y-mazes. Further, the variety of data produced, experimental drawbacks and solutions, and suggested data analysis frameworks have been summarized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.