Invasive reptilian predators can have substantial impacts on native species and ecosystems. Tegu lizards are widely distributed in South America east of the Andes, and are popular in the international live animal trade. Two species are established in Florida (U.S.A.) - Salvator merianae (Argentine black and white tegu) and Tupinambis teguixin sensu lato (gold tegu) – and a third has been recorded there— S. rufescens (red tegu). We built species distribution models (SDMs) using 5 approaches (logistic regression, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy) based on data from the native ranges. We then projected these models to North America to develop hypotheses for potential tegu distributions. Our results suggest that much of the southern United States and northern México probably contains suitable habitat for one or more of these tegu species. Salvator rufescens had higher habitat suitability in semi-arid areas, whereas S. merianae and T. teguixin had higher habitat suitability in more mesic areas. We propose that Florida is not the only state where these taxa could become established, and that early detection and rapid response programs targeting tegu lizards in potentially suitable habitat elsewhere in North America could help prevent establishment and abate negative impacts on native ecosystems.
Management of invasive species, whether prevention, population reduction, or eradication, requires assessment of the invasive species' population status and an assessment of the probability of success of management options. Perceptions of a species' permanence in an environment or lack thereof frequently drives how limited time, financial, and personnel resources are allocated to such efforts. Language we use to describe a non-native species' status largely defines these perceptions and sets boundaries, real or perceived, to potential management actions. Here we discuss the use of a particular term-"established"when confronting management decisions for invasive species. Our objective is to contribute to bridging the gap between the realms of conceptual development and management with respect to use of the term "established". We find that although there are benefits of polysemy and synonymy to conceptual development they present an additional challenge to managers who must weigh the costs, benefits, and potential for success of particular management actions. We also examine how existing conceptual frameworks might be augmented to bridge the theoretical-practical gap, such as more precisely defining potential management actions and explicitly including assessment of risk.
Invasive species globally threaten biodiversity and economies, but the ecophysiological mechanisms underlying their success are often understudied. For those alien species that also exhibit high phenotypic plasticity, such as habitat generalists, adaptations in response to environmental pressures can take place relatively quickly. The Argentine giant tegu (Salvator merianae; tegu) is a large omnivorous lizard from South America that is prolific, long-lived, vagile, and highly adaptable to disturbed environments. They are well suited to the climate of southeastern United States, introduced to several disjunct areas, including the Everglades, where their voracious appetite threatens native wildlife. Tegus undergo winter dormancy (hibernation) to cope with colder temperatures, and while this behavior may facilitate invasion into more temperate regions, it may also present management opportunities. We studied the thermal habits of wild S. merianae within their invaded range in southern Florida, USA. We used radiotelemetry and trail cameras to verify aboveground behaviors, and temperature dataloggers to monitor surface (sunexposed [T e ] and shaded [T s ]), ambient (T a ), subsurface ground (T h ), and internal body (T b ) temperatures of a population of free-ranging tegus over several seasons. We evaluated thermal and behavioral data and identified five biologically significant periods: pre-hibernal, hibernal, cold snaps, hibernal-basking, and post-hibernal. We found tegus maintained thermal stability throughout the hibernal period, frequently at temperatures above available thermal microhabitats. Variation in T b was lowest during hibernation and cold snaps and was less variable than subsurface temperatures despite not leaving their hibernaculum. Hibernal ingress and egress were best predicted by temperature differentials between exposed soil and ambient daily mean temperatures (T e À T a ) and daylength. Though we detected no sex differences, larger animals started hibernation sooner, stayed in hibernation longer, and retained higher fat stores over the study period. One individual did not hibernate, representing only the second record of this behavior. Despite limitations of these descriptive data, this is the first study finely detailing T b of a population of wild, free-ranging S. merianae over multiple biologically significant time periods and to associate T b with thermal habitats within its invasive range. Tegus' apparent ability for thermal stability expands the adaptability breadth of this species and underscores the invasion threat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.