The ability to control charge transfer at molecular and nanometer scales represents the ultimate level of electronic mastery, and its impacts cannot be overstated. As electrostatic analogues of magnets, electrets possess ordered electric dipoles that present key paradigms for directing transduction of electrons and holes. Herein we describe the design and development of fluorinated aminoanthranilamides, derivatives of non-native aromatic beta-amino acids, as building blocks for hole-transfer molecular electrets. A highly regio-selective nucleophilic aromatic substitution of difluorinated nitrobenzoic acid provides the underpinnings for an array of unprecedented anthranilamide structures. Spin density distribution and electrochemical analyses reveal that fluorine induces about 200 mV positive shifts in reduction potentials without compromising the stability of the oxidized residues, making them invaluable building blocks for hole-transfer systems. These findings open unexplored routes to novel amino-acid structures, setting a foundation for bringing principles of proteomics to designs of charge-transfer systems.
Molecular-level control of charge transfer (CT) is essential for both, organic electronics and solarenergy conversion, as well as for a wide range of biological processes. This article provides an overview of the utility of local electric fields originating from molecular dipoles for directing CT processes. Systems with ordered dipoles, i.e. molecular electrets, are the centerpiece of the discussion. The conceptual evolution from biomimicry to biomimesis, and then to biological inspiration, paves the roads leading from testing the understanding of how natural living systems function to implementing these lessons into optimal paradigms for specific applications. This progression of the evolving structure-function relationships allows for the development of bioinspired electrets composed of non-native aromatic amino acids. A set of such non-native residues that are electron-rich can be viewed as a synthetic proteome for hole-transfer electrets. Detailed considerations of the electronic structure of an individual residue prove of key importance for designating the points for optimal injection of holes (i.e. extraction of electrons) in electret oligomers. This multifaceted bioinspired approach for the design of CT molecular systems provides unexplored paradigms for electronic and energy science and engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.