Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by the expression of mutant huntingtin protein (Htt). Suppression of Htt expression, using RNA interference, might be an effective therapy. However, if reduction of wild-type protein is not well tolerated in the brain, it may be necessary to suppress just the product of the mutant allele. We present a small interfering RNA (siRNA) that selectively reduces the endogenous mRNA for a heterozygous HD donor's pathogenic allele by approximately 80% by specifically targeting a single-nucleotide polymorphism (SNP) located several thousand bases downstream from the disease-causing mutation. In addition, we show selective suppression of endogenous mutant Htt protein, using this siRNA. We further present a method, using just a heterozygous patient's own mRNA, to determine which SNP variants correspond to the mutant allele. The method may be useful in any disorder in which a targeted SNP is far downstream from the pathogenic mutation. These results indicate that allele-specific treatment for Huntington's disease may be clinically feasible and practical.
BackgroundImplant infection is one of the most severe complications within the field of orthopaedic surgery, associated with an enormous burden for the healthcare system. During the last decades, attempts have been made to lower the incidence of implant-related infections. In the case of cemented prostheses, the use of antibiotic-containing bone cement can be effective. However, in the case of non-cemented prostheses, osteosynthesis and spinal surgery, local antibacterial prophylaxis is not a standard procedure. For the development of implant coatings with antibacterial properties, there is a need for a reliable animal model to evaluate the preventive capacity of such coatings during a specific period of time. Existing animal models generally present a limited follow-up, with a limited number of outcome parameters and relatively large animal numbers in multiple groups.MethodsTo represent an early post-operative implant infection, we established an acute tibial intramedullary nail infection model in rabbits by contamination of the tibial nail with 3.8 × 105 colony forming units of Staphylococcus aureus. Clinical, haematological and radiological parameters for infection were weekly assessed during a 6-week follow-up with post-mortem bacteriological and histological analyses.ResultsS. aureus implant infection was confirmed by the above parameters. A saline control group did not develop osteomyelitis. By combining the clinical, haematological, radiological, bacteriological and histological data collected during the experimental follow-up, we were able to differentiate between the control and the infected condition and assess the severity of the infection at sequential timepoints in a parameter-dependent fashion.ConclusionWe herein present an acute early post-operative rabbit implant infection model which, in contrast to previously published models, combines improved in-time insight into the development of an implant osteomyelitis with a relatively low amount of animals.
Background and purpose18F-FDG PET is a widely used tool for molecular imaging of oncological, cardiovascular, and neurological disorders. We evaluated 18F-FDG microPET as an implant osteomyelitis imaging tool using a Staphylococcus aureus-induced peroperative implant infection in rabbits.MethodsIntramedullary titanium nails were implanted in contaminated and uncontaminated (control) proximal right tibiae of rabbits. Tibiae were quantitatively assessed with microPET for 18F-FDG uptake before and sequentially at 1, 3, and 6 weeks after surgery. Tracer uptake was assessed in soft tissue and bone in both treatment groups with an additional comparison between the operated and unoperated limb. MicroPET analysis was combined with radiographic assessment and complementary histology of the tibiae.ResultsAt the first postoperative week, the 18F-FDG uptake in the contaminated implant group was significantly higher than the preoperative measurement, without a significant difference between the contaminated and uncontaminated tibiae. From the third postoperative week onward, 18F-FDG uptake allowed discrimination between osteomyelitis and postoperative aseptic bone healing, as well as quantification of the infection at distinct locations around the implant.Interpretation18F-FDG-based microPET imaging allows differentiation between deep infection and undisturbed wound healing after implantation of a titanium intramedullary nail in this rabbit model. Furthermore, our results indicate that 18F-FDG PET may provide a tool in human clinical diagnostics and for the evaluation of antimicrobial strategies in animal models of orthopedic implant infection.
In this study, we investigated the fundamental relationship between the physicochemical characteristics of antibiotics and the kinetics of their release from gelatin nanospheres. We observed that antibiotics of high molecular weight (colistin and vancomycin) were released in a sustained manner from oppositely charged gelatin carriers for more than 14 d, as opposed to antibiotics of low molecular weight (gentamicin and moxifloxacin) which were released in a burst-like manner. The release kinetics of positively charged colistin strongly correlated with the rate of the enzymatic degradation of gelatin. To elucidate the differences among release kinetics of antibiotics, we explored the mechanism of interactions between antibiotics and gelatin nanospheres by monitoring the kinetics of release of antibiotics as a function of pH, ionic strength, and detergent concentrations. These studies revealed that the interactions between antibiotics and gelatin nanospheres were mainly dominated by (i) strong electrostatic forces for colistin; (ii) strong hydrophobic and electrostatic forces for vancomycin; (iii) weak electrostatic and hydrophobic forces for gentamicin; and (iv) weak hydrophobic forces for moxifloxacin. These results confirm that release of antibiotics from gelatin nanospheres strongly depends on the physicochemical characteristics of the antibiotics.
Introduction. Osteomyelitis is a severe orthopaedic complication which is difficult to diagnose and treat. Previous experimental studies mainly focussed on evaluating osteomyelitis in the presence of an implant or used a sclerosing agent to promote infection onset. In contrast, we focused on the longitudinal assessment of a nonimplant related osteomyelitis. Methods. An intramedullary tibial infection with S. aureus was established in NZW rabbits. Clinical and haematological infection status was evaluated weekly, combined with X-ray radiographs, biweekly injections of calcium binding fluorophores, and postmortem micro-CT. The development of the infection was assessed by micro-PET at consecutive time points using 18F-FDG as an infection tracer. Results. The intramedullary contamination of the rabbit tibia resulted in an osteomyelitis. Haematological parameters confirmed infection in mainly the first postoperative weeks (CRP at the first 5 postoperative weeks, leucocyte differentiation at the second and sixth postoperative weeks, and ESR on the second postoperative week only), while micro-PET was able to detect the infection from the first post-operative week onward until the end of the study. Conclusions. This study shows that osteomyelitis in the rabbit can be induced without use of an implant or sclerosing agent. The sequential follow-up indicates that the diagnostic value of each infection parameter is time point dependant. Furthermore, from all parameters used, the diagnostic value of 18F-FDG micro-PET is the most versatile to assess the presence of an orthopaedic infection in this model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.