The most common malignancies in childhood are leukaemias, brain tumours, lymphomas, neuroblastomas, soft tissue sarcomas and kidney tumours. At present, about 80% of childhood cancers can be treated successfully, which has significantly increased long-term survival. Concomitantly, adult gonadal function in childhood cancer survivors has become a concern. However, the immediate effect of cancer and its management on the reproductive axis function has received less attention. We conducted a review of the effects of malignancies and their treatments on the gonadal axis during childhood and adolescence. Some results are controversial, probably because the analyses do not distinguish between the malignancy types, their treatments and/or the age at treatment. However, there is agreement that cancer can partially affect gonadal function before treatment, as revealed by low circulating levels of inhibin B and anti-Müllerian hormone. Subsequently, chemotherapy transiently impairs the somatic component of the gonads (i.e. testicular Sertoli cells and ovarian granulosa cells) with normalization after treatment ends. The impact of chemotherapy may persist through adulthood after more intensive chemotherapy regimens, radiotherapy and conditioning for haematopoietic stem cell transplantation, when there is a severe impairment of the somatic component of the gonads or of the stem germ cells.
IntroductionHematopoietic malignancies are the most frequent type of cancer in childhood. Recent advances in cancer treatment have significantly improved survival until adulthood. There is an extensive literature on the effects of cancer treatment on the gonadal axis in adult survivors of childhood cancer mainly focused on sperm production, but scarce information exists on the immediate impact of cancer and its treatment in boys.ObjectivesIn this work, we determined the status of the hypothalamic-pituitary-testicular (HPT) axis function at diagnosis and the immediate impact of chemotherapy at the start of treatment in children and adolescents with hematopoietic malignancies.Subjects and methodsIn a prospective study of 94 boys and adolescents with acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML) or non-Hodgkin lymphoma (NHL), we determined serum AMH, inhibin B and FSH to assess the gonadotrophin-Sertoli cell component of the HPT axis, and testosterone and LH to evaluate the gonadotrophin-Leydig cell component, at diagnosis and after 3 months of chemotherapy. Secondarily, the general health state was evaluated.ResultsIn prepubertal boys, at diagnosis, AMH, inhibin B and FSH were lower compared to the reference population, reflecting an FSH-Sertoli cell axis dysfunction. After 3 months of chemotherapy, all hormone concentrations increased. At pubertal age, at diagnosis, AMH and inhibin B were lower compared to the reference population for Tanner stage, with inappropriately normal FSH, suggesting a primary Sertoli cell dysfunction with insufficient gonadotrophin compensation. The LH-Leydig cell axis was mildly disrupted. After 3 months of chemotherapy, inhibin B and AMH were unchanged while median FSH levels rose to values that exceeded the reference range, indicating a significant impairment of Sertoli cell function. Testosterone normalized concomitantly with an abnormal LH elevation reflecting a compensated Leydig cell impairment. General health biomarkers were impaired at diagnosis and improved after 3 months.ConclusionThe HPT axis function is impaired in boys with hematopoietic malignancies before the initiation of chemotherapy. There is a primary testicular dysfunction and a concomitant functional central hypogonadism that could be due to an impaired overall health. The HPT axis function improves during the initial 3 months of chemotherapy concomitantly with the general health state. However, in pubertal boys the dysfunction persists as shown by elevated gonadotropin levels after 3 months.
In patients with 46,XY disorders of sex development (DSDs), next-generation sequencing (NGS) has high diagnostic efficiency. One contribution to this diagnostic approach is the possibility of applying reverse phenotyping when a variant in a gene associated with multiple organ hits is found. Our aim is to report a case of a patient with 46,XY DSDs in whom the identification of a novel variant in MYRF led to the detection of a clinically inapparent congenital heart defect. A full-term newborn presented with ambiguous genitalia, as follows: a 2 cm phallus, penoscrotal hypospadias, partially fused labioscrotal folds, an anogenital distance of 1.2 cm, and non-palpable gonads. The karyotype was 46,XY, serum testosterone and AMH were low, whereas LH and FSH were high, leading to the diagnosis of dysgenetic DSD. Whole exome sequencing identified a novel, heterozygous, nonsense variant in MYRF, classified as pathogenic according to the ACMG criteria. MYRF encodes a membrane-bound transcriptional factor expressed in several tissues associated with OCUGS syndrome (ophthalmic, cardiac, and urogenital anomalies). In the patient, oriented clinical assessment ruled out ophthalmic defects, but ultrasonography confirmed meso/dextrocardia. We report a novel MYRF variant in a patient with 46,XY DSDs, allowing us to identify a clinically inapparent congenital heart defect by reverse phenotyping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.