Aspergillus fumigatus is considered to be the most prevalent airborne pathogenic fungus and can cause invasive diseases in immunocompromised patients. It is known that its virulence is multifactorial, although the mechanisms of pathogenicity remain unclear. With the aim of improving our understanding of these mechanisms, we designed a new expression microarray covering the entire genome of A. fumigatus. In this first study, we analysed the transcriptomes of this fungus at the first steps of germination after being grown at 24 and 37 6C. The microarray data revealed that 1249 genes were differentially expressed during growth at these two temperatures. According to our results, A. fumigatus modified significantly the expression of genes related to metabolism to adapt to new conditions. The high percentages of genes that encoded hypothetical or unclassified proteins differentially expressed implied that many as yet unknown genes were involved in the establishment of A. fumigatus infection. Furthermore, amongst the genes implicated in virulence upregulated at 37 6C on the microarray, we found those that encoded proteins mainly related to allergens (Asp F1, Asp F2 and MnSOD), gliotoxin biosynthesis (GliP and GliZ), nitrogen (NiiA and NiaD) or iron (HapX, SreA, SidD and SidC) metabolism. However, gene expression in iron and nitrogen metabolism might be influenced not only by heat shock, but also by the availability of nutrients in the medium, as shown by the addition of fresh medium.
Invasive aspergillosis (IA) is a serious nosocomial infection caused by Aspergillus spp. which has a high mortality rate due to the fact, among other factors, that it is difficult to diagnose. Within the Aspergillus genus, A. fumigatus is the main species causing IA. We propose a virulence factor, the aspHS gene, as a novel target for the specific detection of A. fumigatus by quantitative real-time PCR (qPCR). This target gene encodes a haemolysin, which is overexpressed in vivo during infection. We have designed specific primers and hydrolysis (Taqman) probes for the detection of this target and a chimeric internal amplification control (IC), designed to detect false negative results due to PCR inhibition. This qPCR assay was tested with DNA extracted from a wide collection of microorganisms, tissues from infected mice, and human bronchoalveolar lavage (BAL) samples. Results showed that it, together with the DNA extraction method, could detect A. fumigatus with high specificity. Furthermore, it can distinguish between germinated (first step to the development of infection) and non-germinated conidia (not detected). Our data indicate that these techniques could be sufficiently sensitive and rapid to help clinicians establish an earlier diagnosis, but the presence of PCR inhibitors in clinical samples such as BAL fluids needs to be addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.