Systemic candidiasis remains a major complication among patients suffering from hematological malignancies and favors the development of hepatic metastasis. To contribute to the understanding of the underlying mechanisms, the aim of this study was to identify molecules that may increase tumor cell adhesion to hepatic endothelial cells. To this end, a well-established in vitro model was used to determine the enhancement of tumor cell adhesion induced by Candida albicans and its fractions. Different fractions were obtained according to their molecular weight (M(r)) (five) or to their isoelectric point (pI) (four), using preparative electrophoresis and preparative isoelectric focusing, respectively, followed by affinity chromatography. The fraction that most enhanced melanoma cell adhesion to endothelium had an M(r) range from 45 to 66 kDa. It was characterized using two-dimensional electrophoresis, and 14 proteins were identified by peptide mass fingerprinting: Dor14p, Fba1p, Pdi1p, Pgk1p, Idh2p, Mpg1p, Sfa1p, Ape3p, Ilv5p, Tuf1p, Act1p, Eno1p, Qcr2p, and Adh1p. Of these, several are related to the immunogenic response, and the latter seven belonged to the most reactive fraction according to their pI range, from 5 to 5.6. These findings could represent a step forward in the search for new targets, to suppress the pro-metastatic effect of C. albicans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.