Nucleation in atomic crystallization remains poorly understood, despite advances in classical nucleation theory. The nucleation process has been described to involve a nonclassical mechanism that includes a spontaneous transition from disordered to crystalline states, but a detailed understanding of dynamics requires further investigation. In situ electron microscopy of heterogeneous nucleation of individual gold nanocrystals with millisecond temporal resolution shows that the early stage of atomic crystallization proceeds through dynamic structural fluctuations between disordered and crystalline states, rather than through a single irreversible transition. Our experimental and theoretical analyses support the idea that structural fluctuations originate from size-dependent thermodynamic stability of the two states in atomic clusters. These findings, based on dynamics in a real atomic system, reshape and improve our understanding of nucleation mechanisms in atomic crystallization.
Methyl fl-cellobioside-methanol (C13OI1H24.CH3OH) has space group P21 with two molecules per unit cell. The lattice parameters are a=7.652, b=25.532, c=4.496 A, and fl= 101"84 ° at the experimental temperature of about -193°C. The structure was solved by means of the symbolic addition technique and Fourier syntheses. Block-diagonal least-squares refinement resulted in a final R index of 0"060 for 1724 reflections. The C(5)-C(6) and C(5')-C(6") bonds are shorter than the average carboncarbon bond in the corresponding glucopyranose rings by 2.2 and 3.0 a. The C(I)-O(1) and C(I')-O(I') equatorial glycosidic bonds are shorter than the average of the carbon-hydroxyl bonds by 7.2 and 9.3 a. The valence angle at the O(1') oxygen atom is 2.7 ° smaller than that of the O(1) oxygen atom. The structure contains a bifurcated intramolecular hydrogen bond between the two glucopyranose rings. The angle of twist between the least-squares planes formed by the two rings is 169.3 °. The ring-to-ring conformation after Rees & Skerrett is (-25 °, + 142°). The average deviation between the carboncarbon, ring oxygen-carbon, and glycosidic oxygen-carbon bond lengths which are common to methyl /%cellobioside and cellobiose is 0-005 A.
Gold is an essential noble metal for electronics, and its application area is increasing continuously through the introduction of gold nanoparticle ink that enables rapid prototyping and direct writing of gold electrodes on versatile substrates at a low temperature. However, the synthesis of gold nanoparticles has certain limitations involving high cost, long synthesis time, large waste of material, and frequent use of chemicals. In this study, we suggest simultaneous laser refining of gold cyanide and selective fabrication of gold electrodes directly on the substrate without a separate synthesis step. Gold cyanide is commonly the first product of gold from the primitive ore, and the gold can be extracted directly from the rapid photothermal decomposition of gold cyanide by the laser. It was confirmed that laser-induced thermocapillary force plays an important role in creating the continuous gold patterns by aligning the refined gold. The resultant gold electrodes exhibited a low resistivity analogous to the conventional direct writing method using nanoparticles, and the facile repair process of a damaged electrode was demonstrated as the proof-of-concept. The proposed transformative approach for gold patterning, distinguished from the previous top-down and bottom-up approaches, has the potential to replace the well-known techniques and provide a new branch of electrode manufacturing scheme.
Epitaxial synthesis of inorganic nanomaterials on pristine 2D materials is of interest in the development of nanostructured devices and nanocomposite materials, but is quite difficult because pristine surfaces of 2D materials are chemically inert. Previous studies found a few exceptions including AuCN, AgCN, CuCN, and Cu0.5Au0.5CN, which can be preferentially synthesized and epitaxially aligned onto various 2D materials. Here, we discover that Au1/2Ag1/2CN forms diamond-shaped nanocrystals epitaxially grown on pristine graphene surfaces. The nanocrystals synthesized by a simple drop-casting method are crystallographically aligned to lattice structures of the underlying graphene. Our experimental investigations on 3D structures and the synthesis conditions of the nanocrystals imply that the rhombic 2D geometries originate from different growth rates depending on orientations along and perpendicular to 1D molecular chains of Au1/2Ag1/2CN. We also perform in situ TEM observations showing that Au1/2Ag1/2CN nanocrystals are decomposed to Au and Ag alloy nanocrystals under electron beam irradiation. Our experimental results provide an additional example of 1D cyanide chain families that form ordered nanocrystals epitaxially aligned on 2D materials, and reveal basic physical characteristics of this rarely investigated nanomaterial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.