Nucleation in atomic crystallization remains poorly understood, despite advances in classical nucleation theory. The nucleation process has been described to involve a nonclassical mechanism that includes a spontaneous transition from disordered to crystalline states, but a detailed understanding of dynamics requires further investigation. In situ electron microscopy of heterogeneous nucleation of individual gold nanocrystals with millisecond temporal resolution shows that the early stage of atomic crystallization proceeds through dynamic structural fluctuations between disordered and crystalline states, rather than through a single irreversible transition. Our experimental and theoretical analyses support the idea that structural fluctuations originate from size-dependent thermodynamic stability of the two states in atomic clusters. These findings, based on dynamics in a real atomic system, reshape and improve our understanding of nucleation mechanisms in atomic crystallization.
This study examined the effects of the porosity of catalytic bag-filter materials for applications to the SNCR (selective noncatalytic reduction)-SCR (selective catalytic reduction) hybrid process for highly treating nitrogen Oxides (NOx) in the exhaust gas of a combustion
process. A V2O5/TiO2 catalyst was dispersed in a PTFE (poly-tetra-fluoro-ethylene) used as the catalytic bag-filter material to remove particulate matter and nitrogen oxides contained in the combustion exhaust gas. Macroporous alumina was added into a V2O5/TiO2-dispersed
PTFE to improve the catalytic activity of V2O5/TiO2 dispersed in the PTFE material. In this study, the textural properties and denitrification performances of the V2O5/TiO2-dispersed PTFE materials were examined according to
the addition of macro-porous alumina. When the denitrification catalyst was solely dispersed in the PTFE material, the catalyst inside the PTFE backbone had low gas-solid contact efficiency owing to the low porosity of the PTFE materials, resulting in low denitrification efficiency. On the
other hand, the catalytic activity of V2O5/TiO2 dispersed inside the macro-porous PTFE material was significantly enhanced by adding macro-porous alumina into the PTFE matrix. The enhanced textural properties of the macro-porous PTFE material where V2O5/TiO2
was uniformly dispersed proved the facilitated diffusion of combustion exhaust gas into the PTFE material.
A mechanistic exposure experiment was performed on the commercially available and welded Ni-Cr-Mo-Fe alloy samples used in the piping materials of the coal gasification pilot plant. Thermodynamic Ellingham-Pourbaix stability diagrams were constructed to provide insight into the mechanism of the observed corrosion behavior. The thermodynamic inference on the corrosion mechanism was supplemented with the morphological, compositional and microstructural analyses of the exposed samples using scanning electron microscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy analyses. X-ray diffraction result revealed stable corrosion products of NiO, MoNi 4 and Cr 4.6 MoNi 2.1 after accumulated total exposure duration of 139 h to the corrosive atmosphere. Scanning electron microscopy and energy-dispersive X-ray spectroscopy positively identified formation of rather continuous and adherent pre-oxidation corrosion products although extensively peeled-off oxides were finally observed as corrosion scales on the post-exposure alloy samples, which were attributed to the chlorination/oxidation into thin (spalled) oxides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.