Autonomous underwater vehicles (AUVs) are unmanned marine robots that have been used for a broad range of oceanographic missions. They are programmed to perform at various levels of autonomy, including autonomous behaviours and intelligent behaviours. Adaptive sampling is one class of intelligent behaviour that allows the vehicle to autonomously make decisions during a mission in response to environment changes and vehicle state changes. Having a closed-loop control architecture, an AUV can perceive the environment, interpret the data and take follow-up measures. Thus, the mission plan can be modified, sampling criteria can be adjusted, and target features can be traced. This paper presents an overview of existing adaptive sampling techniques. Included are adaptive mission uses and underlying methods for perception, interpretation and reaction to underwater phenomena in AUV operations. The potential for future research in adaptive missions is discussed.
We introduce an adaptive sampling method that has been developed to support the Backseat Driver control architecture of the Memorial University of Newfoundland (MUN) Explorer autonomous underwater vehicle (AUV). The design is based on an acoustic detection and in-situ analysis program that allows an AUV to perform automatic detection and autonomous tracking of an oil plume. The method contains acoustic image acquisition, autonomous triggering, and thresholding in the search stage. A new biomimetic search pattern, the bumblebee flight path, was designed to maximize the spatial coverage in the oil plume detection phase. The effectiveness of the developed algorithm was validated through simulations using a two-dimensional planar plume model and a 90-degree scanning sensor model. The results demonstrate that the bumblebee search design combined with a genetic solution for the Traveling Salesperson Problem outperformed a conventional lawnmower survey, reducing the AUV travel distance by up to 75.3%. Our plume detection strategy, using acoustic sensing, provided data of plume location, distribution, and density, over a sector in contrast with traditional chemical oil sensors that only provide readings at a point.
We have developed an adaptive sampling algorithm for an Explorer autonomous underwater vehicle (AUV) to conduct in-situ analysis of acoustic measurements to perform autonomous oil plume detection and tracking. The methodology of the tracking phase involves ongoing analysis of the detected plume, assessing target validity and proximity for AUV decision-making for plume mapping. We previously introduced the bumblebee flight path, a new biomimetic search pattern designed to maximize the spatial coverage in the oil plume detection phase. This paper focuses on a new tracking strategy as the key adaptive stage in our plume delineation. For initial development we used a 360-degree scanning sonar sensor model. Simulations were done with different plume models to assess the performance of the developed adaptive sampling algorithm. A convergence study demonstrated that the algorithm could successfully track the boundary of a non-regular shaped/patchy oil plume at up to a 0.05Hz sampling frequency. A sensitivity study identified the correlations between plume feature complexity and the anticipated range of acoustic measurement update delays. The decision-making architecture consists of three separate components which implements either proximity or boundary following control and contributes to the final decision on the next desired heading of the vehicle. A weight ratio, that determined the relative allocation of each component, was varied to study its impact on the tracking performance of the AUV. The novelty of our approach is in addressing the discontinuous and patchy nature of realistic oil plumes. Our sampling algorithm and its performance in simulations is a significant step beyond the practical limitations of existing gradient-following methods because it accounts for the oil patches and droplets which gradient-following algorithms do not.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.