3-Deoxyanthoxyanins (3-DXA) possess unique chemical and biochemical properties and may be useful in helping reduce incidence of gastrointestinal cancer. This study tested sorghum extracts rich in 3-DXA as well as isolated and synthetic 3-DXA for potential to induce activity of phase II enzymes in murine hepatoma cells using the NAD(P)H:quinone oxidoreductase (NQO) assay and to inhibit proliferation of the HT-29 human colon cancer cells using MTT and PicoGreen assays. Crude black sorghum extract that contained high levels of methoxylated 3-DXA was a strong inducer of NQO activity (3.0 times at 50 microg/mL), compared to red or white sorghum extracts with low or no methoxylated 3-DXA (1.6 times at 200 microg/mL). All sorghum extracts had strong antiproliferative activity against HT-29 cells after 48 h of incubation (IC(50) = 180-557 microg/mL). Among isolated fractions, nonmethoxylated 3-DXA were very effective against HT-29 cell growth (IC(50) = 44-68 microM at 48 h), but were noninducers of NQO. On the other hand, the methoxylated 3-DXA had both strong antiproliferative activity (IC(50) < 1.5-53 microM) and NQO inducer activity (2-3.7 times). Dimethoxylated 3-DXA were more potent than monomethoxylated analogues. Methoxylation of 3-DXA is essential for NQO activity and also enhances tumor cell growth inhibition.
Prostate cancer is an important public health problem in the United States. Seven phytoestrogens found in common herbal products were screened for estrogen receptor binding and growth inhibition of androgen-insensitive (PC-3) and androgen-sensitive (LNCaP) human prostate tumor cells. In a competitive 3H-estradiol ligand binding assay using mouse uterine cytosol, 2.5 M quercetin, baicalein, genistein, epigallocatechin gallate (EGCG), and curcumin displaced > 85% of estradiol binding, whereas apigenin and resveratrol displaced > 40%. From growth inhibition studies in LNCaP cells, apigenin and curcumin were the most potent inhibitors of cell growth, and EGCG and baicalein were the least potent. In PC-3 cells, curcumin was the most potent inhibitor of cell growth, and EGCG was the least potent. In both cell lines, significant arrest of the cell cycle in S phase was induced by resveratrol and EGCG and in G2M phase by quercetin, baicalein, apigenin, genistein, and curcumin. Induction of apoptosis was induced by all of the 7 compounds in the 2 cell lines as shown by TUNEL and DNA fragmentation assays. Androgen responsiveness of the cell lines did not correlate with cellular response to the phytoestrogens. In conclusion, these 7 phytoestrogens, through different mechanisms, are effective inhibitors of prostate tumor cell growth.
Previous evidence suggests soy genistein may be protective against prostate cancer, but whether this protection involves an estrogen receptor (ER)-dependent mechanism is unknown. To test the hypothesis that phytoestrogens may act through ERα or ERβ to play a protective role against prostate cancer, we bred transgenic mice lacking functional ERα or ERβ with transgenic adenocarcinoma of mouse prostate (TRAMP) mice. Dietary genistein reduced the incidence of cancer in ER wild-type (WT)/transgenic adenocarcinoma of mouse prostate mice but not in ERα knockout (KO) or ERβKO mice. Cancer incidence was 70% in ERWT mice fed the control diet compared with 47% in ERWT mice fed low-dose genistein (300 mg/kg) and 32% on the high-dose genistein (750 mg/kg). Surprisingly, genistein only affected the well differentiated carcinoma (WDC) incidence but had no effect on poorly differentiated carcinoma (PDC). No dietary effects have been observed in either of the ERKO animals. We observed a very strong genotypic influence on PDC incidence, a protective effect in ERαKO (only 5% developed PDC), compared with 19% in the ERWT, and an increase in the incidence of PDC in ERβKO mice to 41%. Interestingly, immunohistochemical analysis showed ERα expression changing from nonnuclear in WDC to nuclear in PDC, with little change in ERβ location or expression. In conclusion, genistein is able to inhibit WDC in the presence of both ERs, but the effect of estrogen signaling on PDC is dominant over any dietary treatment, suggesting that improved differential targeting of ERα vs. ERβ would result in prevention of advanced prostate cancer.
Consumption of soy foods has been weakly associated with reduced colon cancer risk. Colon cancer risk is influenced by estrogen exposure, although the mechanism through which this occurs is not defined. Conversion of estradiol (E2) to estrone (E1) may be protective in the colon. We hypothesized that dietary phytoestrogens, or E1, would reduce colon tumorigenesis via an estrogen receptor (ER)-dependent mechanism. Ovariectomized ERalphaKO or wild-type (WT) female mice were fed diets containing casein (Casein), soy protein without isoflavones (Soy-IF), soy protein + genistein (Soy+Gen), soy protein + NovaSoy (Soy+NSoy) or soy protein + estrone (Soy+E1) from weaning. Colon tumors were induced with azoxymethane. Tumor incidence was affected by diet but not genotype. Colon tumor incidence was lower in ERalphaKO and WT mice fed the Soy+E1 diet compared with those fed the casein or Soy-IF diets. Mice fed Soy+NSoy had a lower tumor incidence than mice fed casein, but not Soy-IF. Genistein did not affect tumor incidence. Soy protein, independently of phytoestrogens or E1, significantly reduced relative colon weight, tumor burden and multiplicity. Relative colon weight was lower (P=0.008) in mice fed Soy+E1 than in the other soy-fed groups. Tumor incidence in this group was lower than in the casein and soy-IF-fed groups and tended to be lower than in the others (P=0.020). Hence, soy protein and NSoy protect mice from colon cancer, and E1 further reduces colon tumorigenesis in mice, independently of ERalpha.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.