Background As a strategy to maintain postural control, the stiffening strategy (agonist-antagonist co-contractions) is often considered dysfunctional and associated with poor physical capacity. The aim was to investigate whether increased stiffening is associated with unsuccessful postural control during an unpredictable surface perturbation, and which sensory and motor variables that explain postural stiffening. Methods A sample of 34 older adults, 75.8 ± 3.8 years, was subjected to an unpredicted surface perturbation with the postural task to keep a feet-in-place strategy. The participants also completed a thorough sensory- and motor test protocol. During the surface perturbation, electromyography was measured from tibialis anterior and gastrocnemius to further calculate a co-contraction index during the feed-forward and feedback period. A binary logistic regression was done with the nominal variable, if the participant succeeded in the postural task or not, set as dependent variable and the co-contraction indexes set as independent variables. Further, the variables from the sensory and motor testing were set as independent variables in two separate Orthogonal Projections of Latent Structures (OPLS)-models, one with the feed-forward- and the other with the feedback co-contraction index as dependent variable. Results Higher levels of ankle joint stiffening during the feedback, but not the feed-forward period was associated with postural task failure. Feedback stiffening was explained by having slow non-postural reaction times, poor leg muscle strength and being female whereas feed-forward stiffening was not explained by sensory and motor variables. Conclusions When subjected to an unpredicted surface perturbation, individuals with higher feedback stiffening had poorer postural control outcome, which was explained by poorer physical capacity. The level of feed-forward stiffening prior the perturbation was not associated with postural control outcome nor the investigated sensory and motor variables. The intricate causal relationships between physical capacity, stiffening and postural task success remains subject for future research.
As we age there are natural physiological deteriorations that decrease the accuracy and flexibility of the postural control system, which increases the risk of falling. Studies have found that there are individual differences in the ability to learn to manage repeated postural threats. The aim of this study was to investigate which factors explain why some individuals are less proficient at adapting to recurrent postural perturbations. Thirty-five community dwelling older adults performed substantial sensory and motor testing and answered surveys regarding fall-related concerns and cognitive function. They were also subjected to three identical surface perturbations where both kinematics and electromyography was captured. Those that were able to adapt to the third perturbation were assigned to the group “Non-fallers” whereas those that fell during all perturbations were assigned to the group “Fallers”. The group designation dichotomized the sample in a hierarchical orthogonal projection of latent structures— the discriminant analysis model. We found that those who fell were older, had poorer physical performance, poorer strength and longer reaction times. The Fallers’ postural control strategies were more reliant on the stiffening strategy along with a more extended posture and they were less skillful at making appropriate feedforward adaptations prior to the third perturbation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.