To understand complex micro/nanoscale ECM stem cell interactions, reproducible in vitro models are needed that can strictly recapitulate the relative content and spatial arrangement of native tissue. Additionally, whole ECM proteins are required to most accurately reflect native binding dynamics. To address this need, we use multiphoton excited photochemistry to create 3D whole protein constructs or "modules" to study how the ECM governs stem cell migration. The constructs were created from mixtures of BSA/laminin (LN) and BSA alone, whose comparison afforded studying how the migration dynamics are governed from the combination of morphological and ECM cues. We found that mesenchymal stem cells interacted for significantly longer durations with the BSA/LN constructs than pure BSA, pointing to the importance of binding cues of the LN. Critical to this work was the development of an automated system with feedback based on fluorescence imaging to provide quality control when synthesizing multiple identical constructs.
Background information Continued advances in stem cell biology and stem cell transplantation rely on non-invasive biomarkers to characterise cells and stem cell aggregates. The non-invasive quality of such biomarkers is essential because exogenous labels, probes or reporters can unintentionally and dramatically alter stem cell state as can disruption of cell-cell and cell-matrix interactions. Here, we investigate the utility of the autofluorescent metabolite, nicotinamide adenine dinucleotide (NADH), as a non-invasive, intrinsic biomarker of cell death when detected with multi-photon optical-based approaches. To test this possibility, cell death was induced in murine embryoid bodies (EBs) at an early stage (day 3) of differentiation using staurosporine, an ATP-competitive kinase inhibitor of electron transport. Several hours after staurosporine treatment, EBs were stained with a single-colour, live/dead probe. A single-cross-sectional plane of each EB was imaged to detect the fluorescence intensity of the live/dead probe (extrinsic fluorescence) as well as the fluorescence intensity of NADH (intrinsic fluorescence). EBs were assessed at subsequent time points (days 6–12) for the formation of beating areas as an indicator of functional differentiation. Results Statistical comparison indicated a strong positive correlation between extrinsic fluorescence intensity of the live/dead stain and intrinsic fluorescence of NADH, suggesting that the intensity of NADH fluorescence could be used to reliably and non-invasively assess death of cells of EBs. Furthermore, EBs that had high levels of cell death soon after aggregate formation had limited ability to give rise to functional cardiomyocytes at later time points. Conclusions We demonstrate the utility of NADH fluorescence intensity as a non-invasive indicator of cell death in stem cell aggregates when measured using multi-photon excitation. In addition, we show that the degree of stem cell death at early stages of differentiation is predictive for the formation of functional cardiomyocytes.
The therapeutic potential of stem cells is limited by the non-uniformity of their phenotypic state. Thus it would be advantageous to noninvasively monitor stem cell status. Driven by this challenge, we employed multidimensional multiphoton microscopy to quantify changes in endogenous fluorescence occurring with pluripotent stem cell differentiation. We found that global and cellular-scale fluorescence lifetime of human embryonic stem cells (hESC) and murine embryonic stem cells (mESC) consistently decreased with differentiation. Less consistent were trends in endogenous fluorescence intensity with differentiation, suggesting intensity is more readily impacted by nuances of species and scale of analysis. What emerges is a practical and accessible approach to evaluate, and ultimately enrich, living stem cell populations based on changes in metabolism that could be exploited for both research and clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.