Pharmaceutical contaminants are growing aquatic-health concerns and largely attributed to wastewater treatment facility (WWTF) discharges. Five biweekly water samples from 59 small Piedmont (United States) streams were analyzed for 108 pharmaceuticals and degradates using high-performance liquid chromatography and tandem mass spectrometry. The antidiabetic metformin was detected in 89% of samples and at 97% of sites. At least one pharmaceutical was detected at every site (median of 6, maximum of 45), and several were detected at ≥10% of sites at concentrations reported to affect multiple aquatic end points. Maximal cumulative (all detected compounds) concentrations per site ranged from 17 to 16000 ng L −1 . Watershed urbanization, water table depth, soil thickness, and WWTF metrics correlated significantly with in-stream pharmaceutical contamination. Comparable pharmaceutical concentrations and detections at sites with and without permitted wastewater discharges demonstrate the importance of non-WWTF sources and the need for broad-scale mitigation. The results highlight a fundamental biochemical link between global human-health crises like diabetes and aquatic ecosystem health.
Despite historical observations of potential microcystin-producing cyanobacteria (including Leptolyngbya, Phormidium, Pseudoanabaena, and Anabaena species) in 74% of headwater streams in Alabama, Georgia, South Carolina, and North Carolina (USA) from 1993 to 2011, fluvial cyanotoxin occurrence has not been systematically assessed in the southeastern United States. To begin to address this data gap, a spatial reconnaissance of fluvial microcystin concentrations was conducted in 75 wadeable streams in the Piedmont region (southeastern USA) during June 2014. Microcystins were detected using enzyme-linked immunosorbent assay (limit = 0.10 µg/L) in 39% of the streams with mean, median, and maximum detected concentrations of 0.29 µg/L, 0.11 µg/L, and 3.2 µg/L, respectively. Significant (α = 0.05) correlations were observed between June 2014 microcystin concentrations and stream flow, total nitrogen to total phosphorus ratio, and water temperature; but each of these factors explained 38% or less of the variability in fluvial microcystins across the region. Temporal microcystin variability was assessed monthly through October 2014 in 5 of the streams where microcystins were observed in June and in 1 reference location; microcystins were repeatedly detected in all but the reference stream. Although microcystin concentrations in the present study did not exceed World Health Organization recreational guidance thresholds, their widespread occurrence demonstrates the need for further investigation of possible in-stream environmental health effects as well as potential impacts on downstream lakes and reservoirs. Environ Toxicol Chem 2016;35:2281-2287. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.
Endocrine-disrupting chemicals (EDCs) in surface water and bed sediment threaten the structure and function of aquatic ecosystems. In natural, remote, and protected surface-water environments where contaminant releases are sporadic, contaminant biodegradation is a fundamental driver of exposure concentration, timing, duration, and, thus, EDC ecological risk. Anthropogenic contaminants, including known and suspected EDCs, were detected in surface water and sediment collected from 2 streams and 2 lakes in Rocky Mountain National Park (Colorado, USA). The potential for aerobic EDC biodegradation was assessed in collected sediments using 6 (14) C-radiolabeled model compounds. Aerobic microbial mineralization of natural (estrone and 17β-estradiol) and synthetic (17α-ethinylestradiol) estrogen was significant at all sites. Bed sediment microbial communities in Rocky Mountain National Park also effectively degraded the xenoestrogens bisphenol-A and 4-nonylphenol. The same sediment samples exhibited little potential for aerobic biodegradation of triclocarban, however, illustrating the need to assess a wider range of contaminant compounds. The present study's results support recent concerns over the widespread environmental occurrence of carbanalide antibacterials, like triclocarban and triclosan, and suggest that backcountry use of products containing these compounds should be discouraged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.