As a consequence of the current excellent loco-regional control rates attained using the generally accepted treatment paradigms involving intensity-modulated radiotherapy for nasopharyngeal carcinoma (NPC), only 10-20% of patients will suffer from local and/or nodal recurrence after primary treatment. Early detection of recurrence is important as localized recurrent disease is still potentially salvageable, but this treatment often incurs a high risk of major toxicities. Due to the possibility of radio-resistance of tumors which persist or recur despite adequate prior irradiation and the limited tolerance of adjacent normal tissues to sustain further additional treatment, the management of local failures remains one of the greatest challenges in this disease. Both surgical approaches for radical resection and specialized re-irradiation modalities have been explored. Unfortunately, available data are based on retrospective studies, and the majority of them are based on a small number of patients or relatively short follow-up. In this article, we will review the different salvage treatment options and associated prognostic factors for each of them. We will also propose a treatment algorithm based on the latest available evidence and discuss the future directions of treatment for locally recurrent NPC. ☆ This paper was written by members and invitees of the International Head and Neck Scientific Group (www.IHNSG.com).
An outbreak of severe acute respiratory syndrome (SARS) occurred in China and the first case emerged in mid-November 2002. The aetiological agent of this disease was found to be a previously unknown coronavirus, SARS-associated coronavirus (SARS-CoV). The detailed pathology of SARS-CoV infection and the host response to the viral infection are still not known. The 3a gene encodes a non-structural viral protein, which is predicted to be a transmembrane protein. In this study, it was shown that the 3a protein was expressed in the lungs and intestinal tissues of SARS patients and that the protein localized to the endoplasmic reticulum in 3a-transfected monkey kidney Vero E6 cells. In vitro experiments of chromatin condensation and DNA fragmentation suggested that the 3a protein may trigger apoptosis. These data showed that overexpression of a single SARS-CoV protein can induce apoptosis in vitro.
Chronic inflammation, coupled with alcohol, betel quid, and cigarette consumption, is associated with oral squamous cell carcinoma (OSCC). Interleukin-1 beta (IL-1b) is a critical mediator of chronic inflammation and implicated in many cancers. In this study, we showed that increased pro-IL-1b expression was associated with the severity of oral malignant transformation in a mouse OSCC model induced by 4-Nitroquinolin-1-oxide (4-NQO) and arecoline, two carcinogens related to tobacco and betel quid, respectively. Using microarray and quantitative PCR assay, we showed that pro-IL-1b was upregulated in human OSCC tumors associated with tobacco and betel quid consumption. In a human OSCC cell line TW2.6, we demonstrated nicotine-derived nitrosamine ketone (NNK) and arecoline stimulated IL-1b secretion in an inflammasome-dependent manner. IL-1b treatment significantly increased the proliferation and dysregulated the Akt signaling pathways of dysplastic oral keratinocytes (DOKs). Using cytokine antibodies and inflammation cytometric bead arrays, we found that DOK and OSCC cells secreted high levels of IL-6, IL-8, and growth-regulated oncogene-a following IL-1b stimulation. The conditioned medium of IL-1b-treated OSCC cells exerted significant proangiogenic effects. Crucially, IL-1b increased the invasiveness of OSCC cells through the epithelial-mesenchymal transition (EMT), characterized by downregulation of E-cadherin, upregulation of Snail, Slug, and Vimentin, and alterations in morphology. These findings provide novel insights into the mechanism underlying OSCC tumorigenesis. Our study suggested that IL-1b can be induced by tobacco and betel quid-related carcinogens, and participates in the early and late stages of oral carcinogenesis by increasing the proliferation of dysplasia oral cells, stimulating oncogenic cytokines, and promoting aggressiveness of OSCC.
Cucurbit[7]uril (CB[7]) has recently attracted increasing attention in pharmaceutical sciences due to its great potential in improving the physicochemical properties and bioactivity of drug molecules. Herein, we have investigated the influence of CB[7]'s complexation on the solubility, antimycobacterial activity, and cardiotoxicity of a model anti-tuberculosis drug, clofazimine (CFZ), that has poor water-solubility and inherent cardiotoxicity. In our study, CFZ was found to be complexed by CB[7], in a 1 : 1 binding mode with a relatively strong binding affinity (in the order of magnitude of 10(4)-10(5) M(-1)), as determined by the phase solubility method via HPLC-UV analysis and (1)H NMR titration, as well as UV-visible spectroscopic titration, and further confirmed by electrospray ionization mass spectrometry (ESI-MS). Upon complexation, the solubility of virtually insoluble CFZ was significantly increased, reaching a concentration of up to approximately 0.53-fold of the maximum solubility of CB[7]. The inherent cardiotoxicity of CFZ was dramatically reduced to almost nil in the presence of CB[7]. Importantly, on the other hand, such a supramolecular complexation of the drug did not compromise its therapeutic efficacy, as shown by the antimycobacterial activities examined against Mycobacterium smegmatis, demonstrating the significant potential of CB[7] as a functional pharmaceutical excipient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.