For the past two decades, repeatable resonant tunneling transport of electrons in III-nitride double barrier heterostructures has remained elusive at room temperature. In this work we theoretically and experimentally study III-nitride double-barrier resonant tunneling diodes (RTDs), the quantum transport characteristics of which exhibit new features that are unexplainable using existing semiconductor theory. The repeatable and robust resonant transport in our devices enables us to track the origin of these features to the broken inversion symmetry in the uniaxial crystal structure, which generates built-in spontaneous and piezoelectric polarization fields. Resonant tunneling transport enabled by the ground state as well as by the first excited state is demonstrated for the first time over a wide temperature window in planar III-nitride RTDs. An analytical transport model for polar resonant tunneling heterostructures is introduced for the first time, showing a good quantitative agreement with experimental data. From this model we realize that tunneling transport is an extremely sensitive measure of the built-in polarization fields. Since such electric fields play a crucial role in the design of electronic and photonic devices, but are difficult to measure, our work provides a completely new method to accurately determine their magnitude for the entire class of polar heterostructures.
Mycobacterium tuberculosis pyrazinamidase
(PZAse) is a key enzyme to activate the pro-drug pyrazinamide (PZA).
PZAse is a metalloenzyme that coordinates in vitro different divalent metal cofactors in the metal coordination site
(MCS). Several metals including Co2+, Mn2+,
and Zn2+ are able to reactivate the metal-depleted PZAse in vitro. We use quantum mechanical calculations to investigate
the Zn2+, Fe2+, and Mn2+ metal cofactor
effects on the local MCS structure, metal–ligand or metal–residue
binding energy, and charge distribution. Results suggest that the
major metal-dependent changes occur in the metal–ligand binding
energy and charge distribution. Zn2+ shows the highest
binding energy to the ligands (residues). In addition, Zn2+ and Mn2+ within the PZAse MCS highly polarize the O–H
bond of coordinated water molecules in comparison with Fe2+. This suggests that the coordination of Zn2+ or Mn2+ to the PZAse protein facilitates the deprotonation of coordinated
water to generate a nucleophile for catalysis as in carboxypeptidase
A. Because metal ion binding is relevant to enzymatic reaction, identification
of the metal binding event is important. The infrared vibrational
mode shift of the C=Nε (His) bond from the M. tuberculosis MCS is the best IR probe to metal
complexation.
The recent demonstration of resonant tunneling transport in nitride semiconductors has led to an invigorated effort to harness this quantum transport regime for practical applications. In polar semiconductors, however, the interplay between fixed polarization charges and mobile free carriers, leads to asymmetric transport characteristics. Here, we investigate the possibility of using degenerately doped contact layers to screen the built-in polarization fields and recover symmetric resonant injection. Thanks to a high doping density, negative differential conductance is observed under both bias polarities of GaN/AlN resonant tunneling diodes (RTDs). Moreover, our analytical model reveals a lower bound for the minimum resonant tunneling voltage achieved via uniform doping, due to dopant solubility limit. Charge storage dynamics is also studied by impedance measurements, showing that at close-to-equilibrium conditions, polar RTDs behave effectively as parallel-plate capacitors. These mechanisms are completely reproduced by our analytical model, providing a theoretical framework useful in the design and analysis of polar resonant tunneling devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.