Cosmic-ray proton and helium spectra have been measured with the balloon-borne Cosmic Ray Energetics And Mass experiment flown for 42 days in Antarctica in the 2004-2005 austral summer season. High-energy cosmic-ray data were collected at an average altitude of ∼38.5 km with an average atmospheric overburden of ∼3.9 g cm −2 . Individual elements are clearly separated with a charge resolution of ∼0.15 e (in charge units) and ∼0.2 e for protons and helium nuclei, respectively. The measured spectra at the top of the atmosphere are represented by power laws with a spectral index of −2.66 ± 0.02 for protons from 2.5 TeV to 250 TeV and -2.58 ± 0.02 for helium nuclei from 630 GeV nucleon −1 to 63 TeV nucleon −1 . They are harder than previous measurements
.12 e (in charge units) and ∼0.14 e for protons and helium nuclei, respectively, using two layers of silicon charge detectors. The measured proton and helium energy spectra at the top of the atmosphere are harder than other existing measurements at a few tens of GeV. The relative abundance of protons to helium nuclei is 9.53 ± 0.03 for the range of 1 TeV/n to 63 TeV/n. The ratio is considerably smaller than other measurements at a few tens of GeV/n. The spectra become softer above ∼20 TeV. However, our statistical uncertainties are large at these energies and more data are needed.
The advanced molybdenum-based rare process experiment (AMoRE) aims to search for neutrinoless double beta decay ($$0\nu \beta \beta $$0νββ) of $$^{100}$$100Mo with $$\sim 100\,\hbox {kg}$$∼100kg of $$^{100}$$100Mo-enriched molybdenum embedded in cryogenic detectors with a dual heat and light readout. At the current, pilot stage of the AMoRE project we employ six calcium molybdate crystals with a total mass of 1.9 kg, produced from $$^{48}$$48Ca-depleted calcium and $$^{100}$$100Mo-enriched molybdenum ($$^{48{{\text {depl}}}}\hbox {Ca}^{100}\hbox {MoO}_{4}$$48deplCa100MoO4). The simultaneous detection of heat (phonon) and scintillation (photon) signals is realized with high resolution metallic magnetic calorimeter sensors that operate at milli-Kelvin temperatures. This stage of the project is carried out in the Yangyang underground laboratory at a depth of 700 m. We report first results from the AMoRE-Pilot $$0\nu \beta \beta $$0νββ search with a 111 kg day live exposure of $$^{48{{\text {depl}}}}\hbox {Ca}^{100}\hbox {MoO}_{4}$$48deplCa100MoO4 crystals. No evidence for $$0\nu \beta \beta $$0νββ decay of $$^{100}$$100Mo is found, and a upper limit is set for the half-life of $$0\nu \beta \beta $$0νββ of $$^{100}$$100Mo of $$T^{0\nu }_{1/2} > 9.5\times 10^{22}~\hbox {years}$$T1/20ν>9.5×1022years at 90% C.L. This limit corresponds to an effective Majorana neutrino mass limit in the range $$\langle m_{\beta \beta }\rangle \le (1.2-2.1)\,\hbox {eV}$$⟨mββ⟩≤(1.2-2.1)eV.
No abstract
We present a two-axis micromirror array with high fill-factor, using a new fabrication procedure on the full wafer scale. The micromirror comprises a self-aligned vertical comb drive actuator with a mirror plate mounted on it and electrical lines on a bottom substrate. A high-aspect-ratio vertical comb drive was built using a bulk micromachining technique on a silicon-on-insulator (SOI) wafer. The thickness of the torsion spring was adjusted using multiple silicon etching steps to enhance the static angular deflection of the mirrors. To address the array, electrical lines were fabricated on a glass substrate and combined with the comb actuators using an anodic bonding process. The silicon mirror plate was fabricated together with the actuator using a wafer bonding process and segmented at the final release step. The actuator and addressing lines were hidden behind the mirror plate, resulting in a high fill-factor of 84% in an 8 × 8 array of micromirrors, each 340 μm × 340 μm. The fabricated mirror plate has a high-quality optical surface with an average surface roughness (Ra) of 4 nm and a curvature radius of 0.9 m. The static and dynamic responses of the micromirror were characterized by comparing the measured results with the calculated values. The maximum static optical deflection for the outer axis is 4.32 • at 60 V, and the maximum inner axis tilting angle is 2.82 • at 96 V bias. The torsion resonance frequencies along the outer and inner axes were 1.94 kHz and 0.95 kHz, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.