We report the synthesis of centimeter-scale, uniform 1T'- and 2H-MoTe2 thin films via the tellurization of Mo thin films. 1T'-MoTe2 was initially grown and converted gradually to 2H-MoTe2 over a prolonged growth time under a Te atmosphere. Maintaining excessive Te was essential for obtaining the stable stoichiometric 2H-MoTe2 phase. Further annealing under a lower partial pressure of Te at the same temperature, followed by a rapid quenching, led to the reverse phase transition from 2H-MoTe2 to 1T'-MoTe2. The orientation of the 2H-MoTe2 film was determined by the tellurization rate. Slow tellurization was the key for obtaining a highly oriented 2H-MoTe2 film over the entire area, while fast tellurization led to a 2H-MoTe2 film with a randomly oriented c-axis.
We report the synthesis of centimeter-scale monolayer WS2 on gold foil by chemical vapor deposition. The limited tungsten and sulfur solubility in gold foil allows monolayer WS2 film growth on gold surface. To ensure the coverage uniformity of monolayer WS2 film, the tungsten source-coated substrate was placed in parallel with Au foil under hydrogen sulfide atmosphere. The high growth temperature near 935 °C helps to increase a domain size up to 420 μm. Gold foil is reused for the repeatable growth after bubbling transfer. The WS2-based field effect transistor reveals an electron mobility of 20 cm(2) V(-1) s(-1) with high on-off ratio of ∼10(8) at room temperature, which is the highest reported value from previous reports of CVD-grown WS2 samples. The on-off ratio of integrated multiple FETs on the large area WS2 film on SiO2 (300 nm)/Si substrate shows within the same order, implying reasonable uniformity of WS2 FET device characteristics over a large area of 3 × 1.5 cm(2).
Hexagonal boron nitride (h-BN) has recently been in the spotlight due to its numerous applications including its being an ideal substrate for two-dimensional electronics, a tunneling material for vertical tunneling devices, and a growth template for heterostructures. However, to obtain a large area of h-BN film while maintaining uniform thickness is still challenging and has not been realized. Here, we report the systematical study of h-BN growth on Pt foil by using low pressure chemical vapor deposition with a borazine source. The monolayer h-BN film was obtained over the whole Pt foil (2 × 5 cm(2)) under <100 mTorr, where the size is limited only by the Pt foil size. A borazine source was catalytically decomposed on the Pt surface, leading to the self-limiting growth of the monolayer without the associating precipitation, which is very similar to the growth of graphene on Cu. The orientation of the h-BN domains was largely confined by the Pt domain, which is confirmed by polarizing optical microscopy (POM) assisted by the nematic liquid crystal (LC) film. The total pressure and orientation of the Pt lattice plane are crucial parameters for thickness control. At high pressure (∼0.5 Torr), thick film was grown on Pt (111), and in contrast, thin film was grown on Pt (001). Our advances in monolayer h-BN growth will play an important role to further develop a high quality h-BN film that can be used for vertical tunneling, optoelectronic devices and growth templates for a variety of heterostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.