Symptoms of essential tremor (ET) are similar to those of Parkinson’s disease (PD) during their initial stages. Presently, there are few stable biomarkers available on a neuroanatomical level for distinguishing between these two diseases. However, few investigations have directly compared the changes in brain volume and assessed the compensatory effects of a change in the parts of the brain associated with PD and with ET. To determine the compensatory and/or degenerative anatomical changes in the brains of PD and ET patients, the present study tested, via two voxel-based morphometry (VBM) approaches (Basic vs. DARTEL VBM processing), the anatomical brain images of 10 PD and 10 ET patients, as well as of 13 age-matched normal controls, obtained through a 3T magnetic resonance scanner. These findings indicate that PD and ET caused specific patterns of brain volume alterations in the brains examined. In addition, our observations also revealed compensatory effects, or self-reorganization, occurring in the thalamus and the middle temporal gyrus in the PD and ET patients, due perhaps in part to the enhanced thalamocortical sensorimotor interaction and the head-eye position readjustment, respectively, in these PD and ET patients. Such a distinction may lend itself to use as a biomarker for differentiating between these two diseases.
Electroencephalographic (EEG) event-related desynchronization (ERD) induced by movement imagery or by observing biological movements performed by someone else has recently been used extensively for brain-computer interface-based applications, such as applications used in stroke rehabilitation training and motor skill learning. However, the ERD responses induced by the movement imagery and observation might not be as reliable as the ERD responses induced by movement execution. Given that studies on the reliability of the EEG ERD responses induced by these activities are still lacking, here we conducted an EEG experiment with movement imagery, movement observation, and movement execution, performed multiple times each in a pseudorandomized order in the same experimental runs. Then, independent component analysis (ICA) was applied to the EEG data to find the common motor-related EEG source activity shared by the three motor tasks. Finally, conditional EEG ERD responses associated with the three movement conditions were computed and compared. Among the three motor conditions, the EEG ERD responses induced by motor execution revealed the alpha power suppression with highest strengths and longest durations. The ERD responses of the movement imagery and movement observation only partially resembled the ERD pattern of the movement execution condition, with slightly better detectability for the ERD responses associated with the movement imagery and faster ERD responses for movement observation. This may indicate different levels of involvement in the same motor-related brain circuits during different movement conditions. In addition, because the resulting conditional EEG ERD responses from the ICA preprocessing came with minimal contamination from the non-related and/or artifactual noisy components, this result can play a role of the reference for devising a brain-computer interface using the EEG ERD features of movement imagery or observation.
Different levels of visual fatigue in the human eye depend on different color-formation methods and image quality. This paper uses the high-frequency component of the spectral power of accommodative microfluctuations as a major objective indicator for analyzing the effects of visual fatigue based on various displays, such as color-formation displays and 3D displays. Also, a questionnaire is used as a subjective indicator. The results are that 3D videos cause greater visual fatigue than 2D videos (p<0.001), the shutter-type 3D display causes visual fatigue more than the polarized type (p=0.012), the display of the time-sharing method causes greater visual fatigue than the spatial-formation method (p=0.008), and there is no significance between various light source modules of displays (p=0.162). In general, people with normal color discrimination have more visual fatigue than those with good color discrimination (p<0.001). Therefore, this paper uses the high-frequency component of accommodative microfluctuations to evaluate the physiological stress or strain by overexerting the visual system, and can compare the level of visual fatigue between various displays.
Abstract. Recently, hyperspectral imaging (HSI) systems, which can provide 100 or more wavelengths of emission autofluorescence measures, have been used to delineate more complete spectral patterns associated with certain molecules relevant to cancerization. Such a spectral fingerprint may reliably correspond to a certain type of molecule and thus can be treated as a biomarker for the presence of that molecule. However, the outcomes of HSI systems can be a complex mixture of characteristic spectra of a variety of molecules as well as optical interferences due to reflection, scattering, and refraction. As a result, the mixed nature of raw HSI data might obscure the extraction of consistent spectral fingerprints. Here we present the extraction of the characteristic spectra associated with keratinized tissues from the HSI data of tissue sections from 30 oral cancer patients (31 tissue samples in total), excited at two different wavelength ranges (330 to 385 and 470 to 490 nm), using independent and principal component analysis (ICA and PCA) methods. The results showed that for both excitation wavelength ranges, ICA was able to resolve much more reliable spectral fingerprints associated with the keratinized tissues for all the oral cancer tissue sections with significantly higher mean correlation coefficients as compared to PCA (p < 0.001).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.