A modified Chromium 10x droplet-based protocol that subsamples cells for both short-read and long-read (nanopore) sequencing together with a new computational pipeline (FLAMES) is developed to enable isoform discovery, splicing analysis, and mutation detection in single cells. We identify thousands of unannotated isoforms and find conserved functional modules that are enriched for alternative transcript usage in different cell types and species, including ribosome biogenesis and mRNA splicing. Analysis at the transcript level allows data integration with scATAC-seq on individual promoters, improved correlation with protein expression data, and linked mutations known to confer drug resistance to transcriptome heterogeneity.
Alternative splicing shapes the phenotype of cells in development and disease. Long-read RNA-sequencing recovers full-length transcripts but has limited throughput at the single-cell level. Here we developed single-cell full-length transcript sequencing by sampling (FLT-seq), together with the computational pipeline FLAMES to overcome these issues and perform isoform discovery and quantification, splicing analysis and mutation detection in single cells. With FLT-seq and FLAMES, we performed the first comprehensive characterization of the full-length isoform landscape in single cells of different types and species and identified thousands of unannotated isoforms. We found conserved functional modules that were enriched for alternative transcript usage in different cell populations, including ribosome biogenesis and mRNA splicing. Analysis at the transcript-level allowed data integration with scATAC-seq on individual promoters, improved correlation with protein expression data and linked mutations known to confer drug resistance to transcriptome heterogeneity. Our methods reveal previously unseen isoform complexity and provide a better framework for multi-omics data integration.
Skeletal muscle has a remarkable capacity to regenerate following injury, a property conferred by a resident population of muscle stem cells (MuSCs). In response to injury, MuSCs must double their cellular content to divide, a process requiring significant new biomass in the form of nucleotides, phospholipids, and amino acids. This new biomass is derived from a series of intracellular metabolic cycles and alternative routing of carbon. In this review, we examine the link between metabolism and skeletal muscle regeneration with particular emphasis on the role of the cellular microenvironment in supporting the production of new biomass and MuSC proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.