The development of big data technology makes the feature selection technology gradually perfect. The advantages of different feature selection technologies are different. Among them, random forest algorithm belongs to integrated feature selection algorithm. Integrated processing of classification results can screen out the most representative feature impact. Based on this background and random forest algorithm, this paper analyzes the evaluation of motion effect. After the measurement, this paper obtains the body data before and after the training. After the calculation, the change data of the body index are determined. The random forest feature selection method is used as the carrier to determine the corresponding index attribute set. In the process of data set input, the corresponding whole input data set is formed through data classification. The completion of training, through the comparative experiment, is conducive to clear the degree of influence of physical indicators and then complete the exercise effect evaluation. The research shows that the random forest algorithm has significant advantages in the evaluation of sports effect and can effectively improve the accuracy of classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.