Enantiopure molecules based on macrocyclic architecture are unique for applications in enantioselective host‐guest recognition, chiral sensing and asymmetric catalysis. Taking advantage of the chiral transfer from the intrinsically planar chirality of pillar[5]arenes, we herein present an efficient and straightforward approach to achieve early examples of highly luminescent chiral systems (P5NN and P5BN). The optical resolution of their enantiomers has been carried out via preparative chiral HPLC, which was ascribed to the molecular functionalization of pillar[5]arenes with π‐conjugated, sterically bulky triarylamine (Ar3N) as an electron donor and triarylborane (Ar3B) as an acceptor. This crucial design enabled investigations of the chiroptical properties, including circular dichroism (CD) and circularly polarized luminescence (CPL) in the solid state. The intramolecular charge transfer (ICT) nature in P5BN afforded an interesting thermochromic shift of the emission over a wide temperature range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.