The fairness concept has been widely studied in the area of data networks. The most well-known fairness criterion, max-min fairness, gives priority to the minimum rate session. Kelly questioned its appropriateness in his works on the bandwidth sharing among the end-to-end flows and proposed another fairness criterion preferring short distance flows to enhance the overall throughput, which is called the proportional fairness (PF). A simple scheduler achieving this objective was introduced in wireless access networks and revealed that it can achieve a good compromise between cell throughput and user fairness. Though it has received much attention for some time, research on its performance mainly depended on computer simulations. In this paper, we analyze the PF scheduler to obtain the cell throughput which is a primary performance metric.
Agriculture is the primary source of income in developing countries like India. Agriculture accounts for 17 percent of India’s total GDP, with almost 60 percent of the people directly or indirectly employed. While researchers and planters focus on a variety of elements to boost productivity, crop loss due to disease is one of the most serious issues they confront. Crop growth monitoring and early detection of pest infestations are still a problem. With the expansion of cultivation to wider fields, manual intervention to monitor and diagnose insect and pest infestations is becoming increasingly difficult. Failure to apply on time fertilizers and pesticides results in more crop loss and so lower output. Farmers are putting in greater effort to conserve crops, but they are failing most of the time because they are unable to adequately monitor the crops when they are infected by pests and insects. Pest infestation is also difficult to predict because it is not evenly distributed. In the recent past, modern equipment, tools, and approaches have been used to replace manual involvement. Unmanned aerial vehicles serve a critical role in crop disease surveillance and early detection in this setting. This research attempts to give a review of the most successful techniques to have precision-based crop monitoring and pest management in agriculture fields utilizing unmanned aerial vehicles (UAVs) or unmanned aircraft. The researchers’ reports on the various types of UAVs and their applications to early detection of agricultural diseases are rigorously assessed and compared. This paper also discusses the deployment of aerial, satellite, and other remote sensing technologies for disease detection, as well as their Quality of Service (QoS).
The electrical losses in power systems are divided into non-technical losses (NTLs) and technical losses (TLs). NTL is more harmful than TL because it includes electricity theft, faulty meters and billing errors. It is one of the major concerns in the power system worldwide and incurs a huge revenue loss for utility companies. Electricity theft detection (ETD) is the mechanism used by industry and academia to detect electricity theft. However, due to imbalanced data, overfitting issues and the handling of high-dimensional data, the ETD cannot be applied efficiently. Therefore, this paper proposes a solution to address the above limitations. A long short-term memory (LSTM) technique is applied to detect abnormal patterns in electricity consumption data along with the bat-based random under-sampling boosting (RUSBoost) technique for parameter optimization. Our proposed system model uses the normalization and interpolation methods to pre-process the electricity data. Afterwards, the pre-processed data are fed into the LSTM module for feature extraction. Finally, the selected features are passed to the RUSBoost module for classification. The simulation results show that the proposed solution resolves the issues of data imbalancing, overfitting and the handling of massive time series data. Additionally, the proposed method outperforms the state-of-the-art techniques; i.e., support vector machine (SVM), convolutional neural network (CNN) and logistic regression (LR). Moreover, the F1-score, precision, recall and receiver operating characteristics (ROC) curve metrics are used for the comparative analysis.
Due to the increase in the number of electricity thieves, the electric utilities are facing problems in providing electricity to their consumers in an efficient way. An accurate Electricity Theft Detection (ETD) is quite challenging due to the inaccurate classification on the imbalance electricity consumption data, the overfitting issues and the High False Positive Rate (FPR) of the existing techniques. Therefore, intensified research is needed to accurately detect the electricity thieves and to recover a huge revenue loss for utility companies. To address the above limitations, this paper presents a new model, which is based on the supervised machine learning techniques and real electricity consumption data. Initially, the electricity data are pre-processed using interpolation, three sigma rule and normalization methods. Since the distribution of labels in the electricity consumption data is imbalanced, an Adasyn algorithm is utilized to address this class imbalance problem. It is used to achieve two objectives. Firstly, it intelligently increases the minority class samples in the data. Secondly, it prevents the model from being biased towards the majority class samples. Afterwards, the balanced data are fed into a Visual Geometry Group (VGG-16) module to detect abnormal patterns in electricity consumption. Finally, a Firefly Algorithm based Extreme Gradient Boosting (FA-XGBoost) technique is exploited for classification. The simulations are conducted to show the performance of our proposed model. Moreover, the state-of-the-art methods are also implemented for comparative analysis, i.e., Support Vector Machine (SVM), Convolution Neural Network (CNN), and Logistic Regression (LR). For validation, precision, recall, F1-score, Matthews Correlation Coefficient (MCC), Receiving Operating Characteristics Area Under Curve (ROC-AUC), and Precision Recall Area Under Curve (PR-AUC) metrics are used. Firstly, the simulation results show that the proposed Adasyn method has improved the performance of FA-XGboost classifier, which has achieved F1-score, precision, and recall of 93.7%, 92.6%, and 97%, respectively. Secondly, the VGG-16 module achieved a higher generalized performance by securing accuracy of 87.2% and 83.5% on training and testing data, respectively. Thirdly, the proposed FA-XGBoost has correctly identified actual electricity thieves, i.e., recall of 97%. Moreover, our model is superior to the other state-of-the-art models in terms of handling the large time series data and accurate classification. These models can be efficiently applied by the utility companies using the real electricity consumption data to identify the electricity thieves and overcome the major revenue losses in power sector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.