In plants, metal transporters are responsible for metal uptake, translocation and homeostasis. These metals include essential nutrients such as zinc (Zn) and manganese (Mn) or non-essential metals like cadmium (Cd) and lead (Pb). Although a few metal transporters have been well characterized in model plants, little is known about their functionality in rapeseed (Brassica napus). In the study, 22 NRAMP transporter genes from B. napus genome were identified and annotated using bioinformatics and high-throughput RNA-sequencing (RNA-seq). Based on the sequence identity, these NRAMP transporters can be classified into 6 subfamilies. RNA-seq analysis revealed that 19 NRAMP transporters were detected and some of the genes were well confirmed by qRT-PCR. Ten NRAMP transporters (45.5%, 10/22) were found to be differentially expressed (> 2 fold change, p < 0.05) under Cd exposure. As an example, we specified expression of BnNRAMP1b under Cd exposure. BnNRAMP1b is a constitutive gene expressing throughout all development stages including seedlings, vegetative tissue, flowers and siliques. Expression of BnNRAMP1b can be strongly induced in seedlings exposed to 80, 160 and 240 μM Cd. To define whether BnNRAMP1b was specific for Cd transport, a yeast (wild-type, BY4741) system with its mutants (ycf1, zrc1, and smf1) defective in transport activity of Cd, Zn and Mn, respectively were tested. Compared to empty vectors (pYES2), cells carrying BnNRAMP1b can rescue the transport functions. As a consequence, excess Cd, Zn and Mn were taken in the cells, which led to metal toxicity, suggesting that BnNRAMP1b is responsible for transport of these metals in B. napus. Using our previously created degradome datasets, we found that BnNRAMP1b could be cleaved by miR167, suggesting that BnNRAMP1b is a target of miR167 in B. napus. The contrasting expression pattern of BnNRAMP1b and miR167 under Cd stress supported the post-transcriptional regulation of BnNRAMP1b by miR167.
In higher plants, heavy metal transporters are responsible for metal uptake, translocation and homeostasis. These metals include essential metals such as zinc (Zn) or manganese (Mn) and non-essential metals like cadmium (Cd) or lead (Pb). Although a few heavy metal transporters have been well identified in model plants (e.g. Arabidopsis and rice), little is known about their functionality in rapeseed (Brassica napus). B. napus is an important oil crop ranking the third largest sources of vegetable oil over the world. Importantly, B. napus has long been considered as a desirable candidate for phytoremediation owning to its massive dry weight productivity and moderate to high Cd accumulation. In this study, 270 metal transporter genes (MTGs) from B. napus genome were identified and annotated using bioinformatics and high-throughput sequencing. Most of the MTGs (74.8%, 202/270) were validated by RNA-sequencing (RNA-seq) the seedling libraries. Based on the sequence identity, nine superfamilies including YSL, OPT, NRAMP, COPT, ZIP, CDF/MTP, HMA, MRP and PDR have been classified. RNA-sequencing profiled 202 non-redundant MTGs from B. napus seedlings, of which, 108 MTGs were differentially expressed and 62 genes were significantly induced under Cd stress. These differentially expressed genes (DEGs) are dispersed in the rapeseed genome. Some of the genes were well confirmed by qRT-PCR. Analysis of the genomic distribution of MTGs on B. napus chromosomes revealed that their evolutional expansion was probably through localized allele duplications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.