The purpose of this study was to investigate the objective impact in accuracy and reliability with tendency depend on training samples by using the high-resolution images. Supervised classification was performed based on multi-spectral images which made by each satellite and aerial images for considering all of bands' characteristics. The highest accuracy was 84.7% with satellite image(3*3) and 83% with aerial image(5*5) at the accuracy verification phase. Also, the overall accuracy with the consideration of Kappa coefficient were 0.84 for satellite images and 0.82 for aerial images. In all of the images, the smaller training sample was, the higher accuracy showed. Therefore, tree species classification accuracy was tended to rely on training sample size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.