Tonsil-derived mesenchymal stem cells (TMSCs) were investigated for hepatogenic differentiation in the 3D matrixes of poly(ethylene glycol)-b-poly(l-alanine) (PEG-L-PA) thermogel. The diblock polymer formed β-sheet based fibrous nanoassemblies in water, and the aqueous polymer solution undergoes sol-to-gel transition as the temperature increases in a concentration range of 5.0-8.0 wt %. The cell-encapsulated 3D matrix was prepared by increasing the temperature of the cell-suspended PEG-L-PA aqueous solution (6.0 wt %) to 37 °C. The gel modulus at 37 °C was about 1000 Pa, which was similar to that of decellularized liver tissue. Cell proliferation, changes in cell morphology, hepatogenic biomarker expressions, and hepatocyte-specific biofunctions were compared for the following 3D culture systems: TMSC-encapsulated thermogels in the absence of hepatogenic growth factors (protocol M), TMSC-encapsulated thermogels where hepatogenic growth factors were supplied from the medium (protocol MGF), and TMSC-encapsulated thermogels where hepatogenic growth factors were coencapsulated with TMSCs during the sol-to-gel transition (protocol GGF). The spherical morphology and size of the encapsulated cells were maintained in the M system during the 3D culture period of 28 days, whereas the cells changed their morphology and significant aggregation of cells was observed in the MGF and GGF systems. The hepatocyte-specific biomarker expressions and metabolic functions were negligible for the M system. However, hepatogenic genes of albumin, cytokeratin 18 (CK-18), and hepatocyte nuclear factor 4α (HNF 4α) were significantly expressed in both MGF and GGF systems. In addition, production of albumin and α-fetoprotein was also significantly observed in both MGF and GGF systems. The uptake of cardiogreen and low-density lipoprotein, typical metabolic functions of hepatocytes, was apparent for MGF and GGF. The above data indicate that the 3D culture system of PEG-L-PA thermogels provides cytocompatible microenvironments for hepatogenic differentiation of TMSCs. In particular, the successful results of the GGF system suggest that the PEG-L-PA thermogel can be a promising injectable tissue engineering system for liver tissue regeneration after optimizing the aqueous formulation of TMSCs, hepatogenic growth factors, and other biochemicals.
Bone-marrow-derived mesenchymal stem cells (BMSCs) were cultured in three-dimensional (3D) scaffolds formed by temperature-sensitive sol-to-gel transition of BMSC-suspended poly(ethylene glycol)-poly(L-alanine) (PEG-PA) aqueous solutions. A commercialized thermogelling 3D scaffold of Matrigel™ was used for the comparative study. The cells maintained their spherical shapes in the PEG-PA thermogel, whereas fibrous cell morphologies were observed in the Matrigel™. Type II collagen and myogenic differentiation factor 1 were dominantly expressed in the PEG-PA thermogel. On the other hand, a significant extent of type III β-tubulin was expressed in the Matrigel™ in addition to type II collagen and myogenic differentiation factor 1. After confirming the dominant chondrogenic differentiation of the BMSCs in the PEG-PA thermogel in in vitro study, in vivo study was performed for injectable tissue engineering application of the BMSCs/PEG-PA system. The cell-growing implant was formed in situ by subcutaneous injection of the BMSC-suspended PEG-PA aqueous solution to mice. In vivo study also proved the excellent expressions of chondrogenic biomarkers including collagen type II and sulfated glycosaminoglycan in the mouse model. This paper suggests that the PEG-PA thermogel is a very promising as a 3D culture matrix as well as an injectable tissue-engineering system for preferential chondrogenic differentiation of the BMSCs.
Zwitterionic polymers have been investigated as surface-coating materials due to their low protein adsorption properties, which reduce immunogenicity, biofouling, and bacterial adsorption of coated materials. Most zwitterionic polymers, reported so far, are based on (meth)acrylate polymers which can induce toxicity by residual monomers or amines produced by degradation. Here, we report a new zwitterionic polymer consisting of phosphorylcholine (PC) and biocompatible poly(propylene glycol) (PPG) as a new thermogelling material. The PC-PPG-PC polymer aqueous solution undergoes unique multiple sol-gel transitions as the temperature increases. A heat-induced unimer-to-micelle transition, changes in ionic interactions, and dehydration of PPG are involved in the sol-gel transitions. Based on the broad gel window and low protein adsorption properties, the PC-PPG-PC thermogel is proved for sustained delivery of protein drugs and stem cells over 1 week.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.