This review provides insight into the different aspects and challenges associated with the realization of sustainable solar hydrogen production systems on a practical large scale.
Although large research efforts have been devoted to photoelectrochemical (PEC) water splitting in the past several decades, the lack of efficient, stable and Earth-abundant photoelectrodes remains a bottleneck for practical application. Here, we report a photocathode with a coaxial nanowire structure implementing a Cu 2 O/Ga 2 O 3-buried p-n junction that achieves efficient light harvesting across the whole visible region to over 600 nm, reaching an external quantum yield for hydrogen generation close to 80%. With a photocurrent onset over + 1 V against the reversible hydrogen electrode and a photocurrent density of ~10 mA cm −2 at 0 V versus the reversible hydrogen electrode, our electrode constitutes the best oxide photocathode for catalytic generation of hydrogen from sunlight known today. Conformal coating via atomic-layer deposition of a TiO 2 protection layer enables stable operation exceeding 100 h. Using NiMo as the hydrogen evolution catalyst, an all Earth-abundant Cu 2 O photocathode was achieved with stable operation in a weak alkaline electrolyte. To show the practical impact of this photocathode, we constructed an all-oxide unassisted solar water splitting tandem device using state-of-the-art BiVO 4 as the photoanode, achieving ~3% solar-to-hydrogen conversion efficiency.
Photoelectrochemical (PEC) cells for solar‐energy conversion have received immense interest as a promising technology for renewable hydrogen production. Their similarity to natural photosynthesis, utilizing sunlight and water, has provoked intense research for over half a century. Among many potential photocatalysts, BiVO4, with a bandgap of 2.4–2.5 eV, has emerged as a highly promising photoanode material with a good chemical stability, environmental inertness, and low cost. Unfortunately, its charge transport properties are modest, at most a hole diffusion length (Lp) of ≈70 nm. However, recent rapid developments in multiple modification strategies have elevated it to a position as the most promising metal oxide photoanode material. This review summarizes developments in BiVO4 photoanodes in the past 10 years, in which time it has continuously broken its own performance records for PEC water oxidation. Effective modification techniques are discussed, including synthesis of nanostructures/nanopores, external/internal doping, heterojunction fabrication, surface passivation, and cocatalysts. Tandem systems for unassisted solar water splitting and PEC production of value‐added chemicals are also discussed.
Metal oxide semiconductors are promising photoelectrode materials for solar water splitting due to their robustness in aqueous solutions and low cost. Yet, their solar-to-hydrogen conversion efficiencies are still not high enough for practical applications. Here we present a strategy to enhance the efficiency of metal oxides, hetero-type dual photoelectrodes, in which two photoanodes of different bandgaps are connected in parallel for extended light harvesting. Thus, a photoelectrochemical device made of modified BiVO4 and α-Fe2O3 as dual photoanodes utilizes visible light up to 610 nm for water splitting, and shows stable photocurrents of 7.0±0.2 mA cm−2 at 1.23 VRHE under 1 sun irradiation. A tandem cell composed with the dual photoanodes–silicon solar cell demonstrates unbiased water splitting efficiency of 7.7%. These results and concept represent a significant step forward en route to the goal of >10% efficiency required for practical solar hydrogen production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.